Evaluation of the Bonding Strength at the Three-Dimensional Vertex in Silicon-Resin Joints

Author(s):  
Hideo Koguchi ◽  
Masato Nakajima

Portable electric devices such as mobile phone and portable music player become compact and also their performance improves. High density packaging technology such as CSP (Chip Size Package) and Stacked-CSP is needed to realize advanced functions. CSP is a bonded structure composed of materials with different properties. A mismatch of material properties may cause stress singularity at the edge of interface, which lead to the failure of bonding part in structures. Singular stress field in residual thermal stresses occurs in a cooling process after bonding the joints at a high temperature. In the present paper, the strength of interface in CSP consisted of silicon and resin is investigated. Boundary element method and an eigen value analysis based on finite element method are used for evaluating the intensity of singularity of residual thermal stresses at a vertex in a three-dimensional joint. Three-dimensional boundary element program based on the fundamental solution for two-phase isotropic body is used for calculating the stress distribution in the three-dimensional joint. Angular function in the singular stress field at the vertex in the three-dimensional joint is calculated using eigen vector determined from eigen analysis. The strength of bonding at the interface in several silicon-resin specimens with different thickness of resin is investigated analytically and experimentally. Stress singular analysis applying an external force for the joints is firstly carried out. After that, singular stress field for the residual thermal stresses varying material property of resin with temperature is calculated. Combining singular stress fields for the external force and the residual thermal stress yields a final stress distribution for evaluating the strength of interface. A relationship between the external force for delamination in joints and the thickness of resin is derived. Finally, a critical intensity of singularity for delamination between silicon and resin is determined.

Author(s):  
Hideo Koguchi ◽  
Kazuhisa Hoshi

Portable electric devices such as mobile phone and portable music player become compact and improve their performance. High-density packaging technology such as CSP (Chip Size Package) and Stacked-CSP is used for improving the performance of devices. CSP has a bonded structure composed of materials with different properties. A mismatch of material properties may cause stress singularity, which lead to the failure of bonding part in structures. In the present paper, stress analysis using boundary element method and an eigenvalue analysis using finite element method are used for evaluating the intensity of singularity at a vertex in three-dimensional joints. Three-dimensional boundary element program based on the fundamental solution for two-phase isotropic materials is used for calculating the stress distribution in a three-dimensional joint. Angular function in the singular stress field at the vertex in the three-dimensional joint is calculated using eigen vector determined from the eigenvalue analysis. The joining strength of interface in several kinds of sillicon-resin specimen with different triangular bonding areas is investigated analytically and experimentally. Experiment for debonding the interface in the joints is firstly carried out. Stress singularity analysis for the three-dimensional joints subjected to an external force for debonding the joints is secondly conducted. Combining results of the experiment and the analysis yields a final stress distribution for evaluating the strength of interface. Finally, a relationship of force for delamination in joints with different bonding areas is derived, and a critical value of the 3D intensity of singularity is determined.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Hideo Koguchi ◽  
Kazuhisa Hoshi

Portable electric devices such as mobile phones and portable music players have become compact and improved their performance. High-density packaging technology such as chip size package (CSP) and stacked-CSP is used for improving the performance of devices. CSP has a bonded structure composed of materials with different properties. A mismatch of material properties may cause a stress singularity, which leads to the failure of the bonding part in structures. In the present paper, stress analysis using the boundary element method and an eigenvalue analysis using the finite element method are used for evaluating the intensity of a singularity at a vertex in three-dimensional joints. A three-dimensional boundary element program based on the fundamental solution for two-phase isotropic materials is used for calculating the stress distribution in a three-dimensional joint. Angular function in the singular stress field at the vertex in the three-dimensional joint is calculated using an eigenvector determined from the eigenvalue analysis. The joining strength of interface in several kinds of sillicon-resin specimen with different triangular bonding areas is investigated analytically and experimentally. An experiment for debonding the interface in the joints is firstly carried out. Stress singularity analysis for the three-dimensional joints subjected to an external force for debonding the joints is secondly conducted. Combining results of the experiment and the analysis yields a final stress distribution for evaluating the strength of interface. Finally, a relationship of force for delamination in joints with different bonding areas is derived, and a critical value of the 3D intensity of the singularity is determined.


2008 ◽  
Vol 385-387 ◽  
pp. 573-576
Author(s):  
Hideo Koguchi ◽  
Akira Taniguchi

In the present paper, singular stress field at the vertex on the interface in three-dimensional bonded joints is analyzed using BEM and eigen analysis. The order of stress singularity is determined solving an eigen equation based on FEM formulation and the stress distribution is expressed using the result of the eigen-value analysis. A relationship between the thickness of interlayer and residual thermal stresses is presented. Then, a three-dimensional intensity of singularity is determined.


2018 ◽  
Vol 84 (864) ◽  
pp. 18-00013-18-00013 ◽  
Author(s):  
Tatsujiro MIYAZAKI ◽  
Takuma INOUE ◽  
Nao-Aki NODA ◽  
Yoshikazu SANO

2018 ◽  
Vol 2018.71 (0) ◽  
pp. D31
Author(s):  
Mohd Radzi ARIDI ◽  
Nao-Aki NODA ◽  
Kenji TSUBOI ◽  
Rei TAKAKI ◽  
Fei REN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document