Real Time Prediction of Li-Ion Battery Pack Temperatures in EV Vehicles

Author(s):  
Azita Soleymani ◽  
William Maltz

Abstract A semi-analytical digital twin model of a 90 kW.h li-ion battery pack was developed to capture thermal behavior of the pack in a real-time environment. The solution uses reduced-order models that minimize compute cost/time yet are accurate in predicting real-world operation. The real-time heat generation rate in the battery pack is calculated using 2RC equivalent circuit model. A series of HPPC tests were conducted to calibrate the equivalent circuit model in order to accurately calculate heat generation rate as a function of SOC, temperature, current, charge/discharge mode and pulse duration. In the paper, live-sensor data was integrated into the digital twin system level model of the battery pack to create a real-time environment. The generated tool was utilized to monitor the real-time temperature of the battery pack remotely and have a predictive maintenance solution. The model results for heat generation rate, terminal voltage, and temperature were found to be consistent with the test data across a wide range of conditions. The generated model was used to accelerate battery pack design and development by enabling the evaluation of design feasibility and to conduct in-depth root causes analyses for various inputs and operating conditions, including initial SOC, temperature, coolant flow rate, different charge and discharge profiles. The resulting digital twin model provides additional data that cannot be measured offering the EV industry an opportunity to improve its safety record.

Author(s):  
Haoting Wang ◽  
Ning Liu ◽  
Lin Ma

Abstract This paper reports the development of a two-dimensional two states (2D2S) model for the analysis of thermal behaviors of Li-ion battery packs and its experimental validation. This development was motivated by the need to fill a niche in our current modeling capabilities: the need to analyze 2D temperature (T) distributions in large-scale battery packs in real time. Past models were predominately developed to either provide detailed T information with high computational cost or provide real-time analysis but only 1D lumped T information. However, the capability to model 2D T field in real time is desirable in many applications ranging from the optimal design of cooling strategies to onboard monitoring and control. Therefore, this work developed a new approach to provide this desired capability. The key innovations in our new approach involved modeling the whole battery pack as a complete thermal-fluid network and at the same time calculating only two states (surface and core T) for each cell. Modeling the whole pack as a complete network captured the interactions between cells and enabled the accurate resolution of the 2D T distribution. Limiting the calculation to only the surface and core T controlled the computational cost at a manageable level and rendered the model suitable for packs at large scale with many cells.


2015 ◽  
Vol 285 ◽  
pp. 266-273 ◽  
Author(s):  
S.J. Drake ◽  
M. Martin ◽  
D.A. Wetz ◽  
J.K. Ostanek ◽  
S.P. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document