Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements

2015 ◽  
Vol 285 ◽  
pp. 266-273 ◽  
Author(s):  
S.J. Drake ◽  
M. Martin ◽  
D.A. Wetz ◽  
J.K. Ostanek ◽  
S.P. Miller ◽  
...  
Author(s):  
Azita Soleymani ◽  
William Maltz

Abstract A semi-analytical digital twin model of a 90 kW.h li-ion battery pack was developed to capture thermal behavior of the pack in a real-time environment. The solution uses reduced-order models that minimize compute cost/time yet are accurate in predicting real-world operation. The real-time heat generation rate in the battery pack is calculated using 2RC equivalent circuit model. A series of HPPC tests were conducted to calibrate the equivalent circuit model in order to accurately calculate heat generation rate as a function of SOC, temperature, current, charge/discharge mode and pulse duration. In the paper, live-sensor data was integrated into the digital twin system level model of the battery pack to create a real-time environment. The generated tool was utilized to monitor the real-time temperature of the battery pack remotely and have a predictive maintenance solution. The model results for heat generation rate, terminal voltage, and temperature were found to be consistent with the test data across a wide range of conditions. The generated model was used to accelerate battery pack design and development by enabling the evaluation of design feasibility and to conduct in-depth root causes analyses for various inputs and operating conditions, including initial SOC, temperature, coolant flow rate, different charge and discharge profiles. The resulting digital twin model provides additional data that cannot be measured offering the EV industry an opportunity to improve its safety record.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2938 ◽  
Author(s):  
Hongbao Dong ◽  
Yao Zhao ◽  
Hua Yuan ◽  
Xiaocai Hu ◽  
Zhen Yang

Line heating is used in forming the complex curve plates of ships, and this process is becoming integrated into automated tools. Induction heating equipment has become commonly used in automatic line heating. When applying automated equipment, it is necessary to calculate the relationship between the heating parameters and the temperature field. Numerical methods are primarily used to accomplish the calculations for induction heating. This computation process requires repeated iterations to obtain a stable heat generation rate. Once the heat generation rate changes significantly, a recalculation takes place. Due to the relative position of the coil and plate changes during heating, the grid needs to be frequently re-divided during computation, which dramatically increases the total computation time. In this paper, through an analysis of the computation process for induction heating, the root node that restricts the computation efficiency in the conventional electromagnetic-thermal computation process was found. A method that uses a Gaussian function to represent the heat flux was proposed to replace the electromagnetic computation. The heat flux is the input for calculating the temperature field, thus avoiding the calculation of the electromagnetic analysis during induction heating. Besides, an equivalence relationship for multi-coil was proposed in this paper. By comparing the results of the experiment and the numerical method, the proposed heat source model’s effectiveness was verified.


Author(s):  
Makoto Shibahara ◽  
Katsuya Fukuda ◽  
Qiusheng Liu ◽  
Koichi Hata

Critical heat flux (CHF) of convective boiling in a mini-tube due to power transient was measured. A platinum tube with an inner diameter of 1.0 mm was heated exponentially by a direct current power supply as Joule heating. The heated length of the platinum tube was 40.9 mm. The platinum tube was mounted vertically in the water-loop apparatus which consisted of a circulating pump, a pre-heater, a flow mater, a pressurizer, a cooler and a test section. The deionized water was pressurized by the pressurizer up to approximately 800 kPa to measure CHFs at the high subcooling. The upward flow velocity in the platinum tube was ranged from 5 to 11 m/s. The inlet subcooling was ranged from 92 to 117 K. The heat generation rate was controlled with exponential functions. The e-folding time of the heat generation rate was ranged from 30 ms to 18 s. As an experimental result, it was found that the CHFs increased with increasing the flow velocity and the inlet subcooling. The CHF also increased with decreasing the e-folding time of the heat generation rate. Since the heat generation rate of the platinum tube increased rapidly under the power transient condition, it was considered that the heat flux of the platinum tube increased until the vapor blanket covered the heated surface of the platinum tube.


Author(s):  
Xiaoli Yu ◽  
Qichao Wu ◽  
Rui Huang ◽  
Xiaoping Chen

Abstract Heat generation measurements of the lithium-ion battery are crucial for the design of the battery thermal management system. Most previous work uses the accelerating rate calorimeter (ARC) to test heat generation of batteries. However, utilizing ARC can only obtain heat generation of the battery operating under the adiabatic condition, deviating from common operation scenarios with heat dissipation. Besides, using ARC is difficult to measure heat generation of the high-rate operating battery because the battery temperature easily exceeds the maximum safety limit. To address these problems, we propose a novel method to obtain heat generation of cylindrical battery based on core and surface temperature measurements and select the 21700 cylindrical battery as the research object. Based on the method, total heat generation at 1C discharge rate under the natural convection air cooling condition in the environmental chamber is about 3.2 kJ, and the average heat generation rate is about 0.9 W. While these two results measured by ARC are about 2.2 kJ and 0.6 W. This gap also reflects that different battery temperature histories have significant impacts on heat generation. In addition, using our approach, total heat generation at 2C discharge rate measured in the environmental chamber is about 5.0 kJ, with the average heat generation rate being about 2.8 W. Heat generation results obtained by our method are approximate to the actual battery operation and have advantages in future applications.


Sign in / Sign up

Export Citation Format

Share Document