heat generation rate
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 35)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 35 (6) ◽  
pp. 68-74
Author(s):  
Yong-sun Cho ◽  
Dong-Min Kim ◽  
Gyeong-Tae Im

A fire in the main control room of a thermal power plant is a significant threat to the entire power plant by incapacitating the concept of performance design to secure the safety of the power plant. In this study, using the PyroSim and Pathfinder programs to evaluate fire and evacuation risk of the main control room, the appropriate time and fire shape for evacuating people calmly were confirmed when the available safe egress time and required safe egress time of the main control room were compared. In the case of a cable fire, the simulation results indicate the heat generation rate to be more serious than the actual experimental results showed. This is because heat generation was lower in the experiment as the polymer material constituting the cable fell to the floor during combustion and no loger burns. The fire dynamics simulator results indicate that the power plant facility is safe because even these points are not considered.


Author(s):  
Xiaoli Yu ◽  
Qichao Wu ◽  
Rui Huang ◽  
Xiaoping Chen

Abstract Heat generation measurements of the lithium-ion battery are crucial for the design of the battery thermal management system. Most previous work uses the accelerating rate calorimeter (ARC) to test heat generation of batteries. However, utilizing ARC can only obtain heat generation of the battery operating under the adiabatic condition, deviating from common operation scenarios with heat dissipation. Besides, using ARC is difficult to measure heat generation of the high-rate operating battery because the battery temperature easily exceeds the maximum safety limit. To address these problems, we propose a novel method to obtain heat generation of cylindrical battery based on core and surface temperature measurements and select the 21700 cylindrical battery as the research object. Based on the method, total heat generation at 1C discharge rate under the natural convection air cooling condition in the environmental chamber is about 3.2 kJ, and the average heat generation rate is about 0.9 W. While these two results measured by ARC are about 2.2 kJ and 0.6 W. This gap also reflects that different battery temperature histories have significant impacts on heat generation. In addition, using our approach, total heat generation at 2C discharge rate measured in the environmental chamber is about 5.0 kJ, with the average heat generation rate being about 2.8 W. Heat generation results obtained by our method are approximate to the actual battery operation and have advantages in future applications.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Wang

This study was conducted to investigate the transient heat transfer characteristics of a twisted structure. The twisted structure was heated according to exponential function (Q=Q0×exp(t/τ), where Q0 is the initial heat generation rate, W/m3; t is time, s; and τ is the period of heat generation rate). A wide range of τ from 37 ms to 14 s was applied for the experimental study. A platinum plate with five pitches (each was 180° twisted with 20 mm in length) was used in the experiment. Helium gas with inlet temperature of 298 K under 500 kPa was used as the coolant. The heat transfer coefficient is found to increase with the decrease of τ, and the transition point was estimated to be at τ≈1s, which means that, when the increasing ratio of heat generation rate satisfies dQdt≥Q0⋅et, the heat transfer enhancement phenomenon will be observed. The response analysis for transient heat transfer at fluid-solid interface was conducted by applying the concept of penetration depth. It is considered that, when the penetration depth is smaller than the thermal boundary thickness, the heat transfer from the interface (wall surface) to the fluid domain is not fully developed during the disturbance.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2753
Author(s):  
Bo Huang ◽  
Minghui Hu ◽  
Lunguo Chen ◽  
Guoqing Jin ◽  
Shuiping Liao ◽  
...  

Considering that use of measured current as input of a battery model may cause distortion of the model due to low accuracy of the on-board current sensor and that power can be used to indicate energy transmission in an electric vehicle model, the power input internal resistance model is widely used in simulation of whole electric vehicles. However, since no consideration is given to battery polarization and electro-thermal coupling characteristics, the foregoing model cannot be used to describe the internal temperature change of batteries under working conditions. Three contributions are made in the present study: (1) ternary lithium-ion batteries were taken as the research objects and a second-order RC equivalent circuit model with power as the input was established in the present study; (2) A dynamic heat generation rate model suitable for RC equivalent circuits was built based on coupled electrical and thermal characteristics of lithium-ion batteries; (3) An electric model and a two-state equivalent thermal network model were further built and combined by using the heat generation rate model to form a power input electro-thermal model. Parameters of the model so formed were identified offline, and the battery model was verified with respect to accuracy under seven working conditions. The results show that the maximum root mean square error in voltage estimation, current estimation, and surface temperature estimation is 19.38 mV, 9.51 mA, and 0.19 °C respectively, which indicates that the power input electro-thermal model can describe the electrical and thermal dynamic behavior of batteries more accurately and comprehensively than the traditional power input internal resistance model.


Author(s):  
Someshwar Ade ◽  
Sushil Rathore

Abstract The present work reports 3D computational study of buoyancy driven flow and heat transfer characteristics for a localized heater (analogous to superconductor) submerged in cryogenic liquid nitrogen in an enclosure. Seven different heater geometries are considered and the effect of heater geometry on flow and heat transfer characteristics are illustrated. The heater is generating heat at a constant rate (W/m3). Continuity, momentum and energy equations are solved using finite volume method. Liquid flow and heat transfer features are demonstrated with the help of velocity vector and temperature contours. Rayleigh number, average Nusselt number, maximum vertical velocity of fluid flow, average velocity of fluid flow are the parameters which are considered for comparing seven different geometries of heater. Additionally, an analysis of the entropy generation owing to transfer of heat and friction due to fluid flow are reported. Furthermore, the dependency of average Nusselt number, maximum velocity of fluid, entropy generation owing to transfer of heat and fluid friction as a function of heat generation rate is illustrated graphically. The results of this study indicate that heater geometry can considerably affect the transfer of heat, fluid flow features and entropy generation under same heat generation rate in the heater. Highest average Nusselt number on heater surface is obtained when heater geometry is circular; whereas lowest value of total entropy generation in the domain is obtained when heater geometry is equilateral triangle.


Author(s):  
Huili Wang ◽  
Sifeng Qin ◽  
Ben Wang ◽  
Shaobo Zhou

To calculate the welding-induced residual stresses in U-ribs of the steel deck plate and conduct quantitative analysis of influential factors, the U-ribs of steel deck plate of Xinghai Bay Bridge was taken as the research object. In the ABAQUS finite element software, the local models of U-ribs of steel deck plate were established. Nodal body force loads, i.e., heat generation rate, of the double ellipsoidal heat source models were applied via the compiled subsidiary Dflux program. The welding process of the v-groove welds was simulated, to obtain the residual stresses distribution in the top plate and U-rib plates. The influence of thickness of top plate and angle of welding groove on the residual stresses in the U-ribs were studied. The results show that the welding-induced residual stresses calculated by the numerical method proposed in this paper agree well with the experimental data. The maximum residual stresses in the top plates and the U-rib plates all occur near the welds, which exceeds the yielding limitation of the material. As the thickness of top plate increases, the maximum values of residual stresses in the top plates and U-ribs increase. However, with the increase of groove angle, the maximum values of residual stresses in the top plates and U-rib plates decrease.


Sign in / Sign up

Export Citation Format

Share Document