Oil Pipeline Standoff Leak Detection: A Novel Approach for Airborne Remote Detection of Small Leaks

Author(s):  
Jean-François Gravel ◽  
Martin Allard ◽  
François Babin ◽  
François Chateauneuf ◽  
Eric Bergeron

While natural gas pipelines already benefit from airborne, remote detection of leaks [1, 2], oil pipeline leak detection has been for a long time reliant on SCADA systems limited in their capability to detect very small leaks, and/or visual inspection of the right of way (line flyers, pipeline employees or members of the public). This paper presents a novel and complementary way of detecting small leaks (i.e. sensitivity of 0.1 L/minute, 1 barrel/day) of oil (crude or refined products) using an optical detection system mounted on an airborne platform (UAV, plane or helicopter). The scope of this paper is based on the requirements provided by TransCanada, namely sensitivity (herein referred as LOD — Limit of Detection) and accuracy (herein referred as spatial resolution) as similar to their description in API 1130, while the topic of reliability is addressed in our noted concerns on the false alarms that may be generated in Infrared-DiAL based systems due to soil reflectivity. Robustness, as described in API 1130, was out of scope. Keeping in mind the requirement of airborne operation, three different approaches for the detection of leaks along long pipeline ROWs were studied. Infrared Differential Absorption lidar (IR-DiAL), UltraViolet Raman lidar (UV-Raman lidar) and UltraViolet Laser-Induced Fluorescence lidar (UV-LIF lidar) have been tested in realistic conditions. In the first round of tests, laboratory spectral measurements of vapors in a closed cell were performed. In the second round of tests, the breadboards were placed in a mobile laboratory and the light beams aimed at a large open at 40 to 50 meters and reflected off a sand target. Finally, the mobile laboratory with the breadboards was installed at ∼40 meters from a leak simulator. The leak simulator was made by using a large sand container in which petroleum products were leaked. Intermediate scale leak simulator tests showed that it is clearly a challenge to correlate a measured concentration to an actual leak size. Tests have also shown that there is a strong concentration gradient in the air above a leak. This indicates that a better overall detection performance should be obtained with a measurement using the air next to the ground, and that it is feasible to detect a leak of less than 1 barrel/day. UV-Raman tests performed in the outdoors suggested a Limit Of Detection (LOD) of the system below 1 500 ppm-m when detecting all hydrocarbons. Because of the hardware that would be needed to lower this detection limit, results suggest abandoning the Raman technique for remote leak detection from an airborne platform. IR-DiAL showed the best sensitivity for the detection of hydrocarbons (< 1 ppm-m of LOD). However the effective LOD will be reduced because of the soil spectral reflectance variations that may lead to a high false alarm rate for concentrations of hydrocarbons lower than 235 ppm-m. The UV-absorption approach was also briefly tested, suggesting a LOD for benzene of between 1.5 and 2.5 ppm-m. The UV absorption of benzene is not affected by ground spectral reflectance variations. This is an approach that will be investigated further.


Author(s):  
XianYong Qin ◽  
LaiBin Zhang ◽  
ZhaoHui Wang ◽  
Wei Liang

Reliability, sensitivity and detecting time under practical operational conditions are the most important parameters of a leak detection system. With the development of hardware and software, more and more pipelines are installed with advanced SCADA (Supervisory Control and Data Acquisition) system, so the compatibility of the leak detection system with SCADA system is also becoming important today. Pipeline leakage generates a sudden change in the pipeline pressure and flow. The paper introduces leak detecting methods according to the pipeline pressure wave change. In order to improve the compatibility of the leak detecting system, “OPC (Ole for process Control)” technology is used for obtaining the pressure signals from the distributed data collection system. Special focus is given on analysis of the pressure signals. It is successful to denoise the signals by means of wavelet scale shrinkage, and to capture the leak time tag using wavelet transform modulus maximum for locating the leak position accurately. A leak detecting system is established based on SCADA system. Tests and practical applications show that it locates leak position precisely. Good performance is obtained on both crude oil pipeline and product pipeline.



2011 ◽  
Vol 112 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Yufeng Wang ◽  
Dengxin Hua ◽  
Jiandong Mao ◽  
Li Wang ◽  
Yaoke Xue


2014 ◽  
Author(s):  
S. Almaviva ◽  
F. Angelini ◽  
R. Chirico ◽  
A. Palucci ◽  
M. Nuvoli ◽  
...  


2014 ◽  
Vol 7 (1) ◽  
pp. 769-817
Author(s):  
H. M. J. Barbosa ◽  
B. Barja ◽  
T. Pauliquevis ◽  
D. A. Gouveia ◽  
P. Artaxo ◽  
...  

Abstract. A permanent UV Raman Lidar station, designed to perform continuous measurements of aerosols and water vapor and aiming to study and monitor the atmosphere on the weather to climatic time scales, became operational in central Amazon in July 2011. The automated data acquisition and internet monitoring enabled extended hours of daily measurements when compared to a manually operated instrument. This paper gives a technical description of the system, presents its experimental characterization and the algorithms used for obtaining the aerosol optical properties and identifying the cloud layers. Data from one week of measurements during the dry season of 2011 were analyzed as a mean to assess the overall system capability and performance. A comparison of the aerosol optical depth from the Lidar and a co-located AERONET sun photometer showed a root mean square error of about 0.06, small compared to the range of observed AOD values (0.1 to 0.75) and to the typical AERONET AOD uncertainty (0.02). By combining nighttime measurements of the aerosol lidar ratio (50–65 sr), backtrajectories calculations and fire spots observed from satellites we showed that observed particles originated from biomass burning. Cirrus clouds were observed in 60% of our measurements. Most of the time they were distributed into three layers between 11.5 and 13.4 km a.g.l. The systematic and long-term measurements being made by this new scientific facility have the potential to significantly improve our understanding of the climatic implications of the anthropogenic changes in aerosol concentrations over the pristine Amazônia.



Author(s):  
Harry SMITH ◽  
Kirsty MCNEIL ◽  
Tom RECORD ◽  
Dan BUZATU ◽  
Georgian ILIESCU ◽  
...  


Author(s):  
Ruprecht M. J. Pichler

Leak detection systems for liquid pipelines are installed to minimize spillage in case of a leak. Therefore reliability, sensitivity and detection time under practical operating conditions are the most important parameters of a leak detection system. Noise factors to be considered among others are unknown fluid property data, friction factor, instrument errors, transient flow, slack-line operation and SCADA update time. The opening characteristics and the size of leaks differ considerably from case to case. Each software-based leak detection method available today has its particular strength. As long as just one or two of these methods are applied to a pipeline a compromise has to be found for the key parameters of the leak detection system. The paper proposed illustrates how a combination of several different software-based leak detection methods together with observer-type system identification and a knowledge-based evaluation can improve leak detection. Special focus is given to leak detection and automated leak locating under transient flow conditions. Practical results are shown for a crude oil pipeline and a product pipeline.



Sign in / Sign up

Export Citation Format

Share Document