ole for process control
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Omar Chamorro-Atalaya ◽  
Dora Arce-Santillan ◽  
Teodoro Diaz-Leyva ◽  
Martin Diaz-Choque

<span>The purpose of this article is to describe the development of a prototype of a monitoring and control system for a fire-fighting system, implemented through SCADA (supervisory control and data acquisition) for which the OPC (OLE for process control) is known. Known KepServerEX6 (single data source connectivity platform), with which the integration of the PLC (programmable logic controller), the human-machine interface (HMI) and the computer will be controlled, with the application of monitoring the operating parameters of a fire fighting system. These parameters are the pressure and flow of the electric pump, the values of the parameters are regularly controlled automatically by means of a frequency variator, according to the sprinkler actuation, the variator varies its operating frequency until achieving the optimal pressure and flow values. The level of correlation between the indicators to be monitored by the SCADA system is highly significant, equal to 0.977, 0.983 and 0.997 respectively. In addition, the dispersion model of the indicators monitored by the SCADA system will be determined, is the quadratic, with a determination factor of 0.999.</span>


Batteries ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 52
Author(s):  
Youjun Han ◽  
Yueming Hu ◽  
Yaqing Wang ◽  
Gang Jia ◽  
Chengjie Ge ◽  
...  

Automation equipment with different functions from different manufacturers is common in lithium ion battery manufacturing workshops, which is manifested as heterogeneous data distributed at different network levels at the information level. The interconnection between a workshop system and equipment is the basis for realizing manufacturing informatization and intelligence, and is a core problem of intelligent manufacturing workshop integration. The key to solve this problem is to establish a standardized and consistent information model. Aiming at the problem of information interconnection, this paper established an information model of the intelligent manufacturing workshop of lithium ion batteries based on the analysis of the architecture, functional categories, and information interaction of the intelligent manufacturing workshop. Then, by clarifying the attribute set, component set, and the information objects contained in each information model, the hierarchical architecture of the information model was constructed. Then, the rules that map the information model in to the OLE for Process Control Unified Architecture (OPC UA) address space is established. The approach for implementing data storage and interaction of the information model based on the OPC UA server/client are also discussed. Finally, taking the soft-pack battery manufacturing workshop as an example, the information model is applied to realize the interconnection and interoperability of production management data, material management data, equipment management data, and quality management data among various levels of the workshop, which verifies the feasibility of the proposed information model.


2020 ◽  
Vol 13 (3) ◽  
pp. 1
Author(s):  
Ika Priyanti ◽  
Adi Abimanyu ◽  
Dr. Muhtadan ◽  
Saminto, ST

PSTA BATAN (Center of Science and Accelerator Technology) has been developed the 13 MeV cyclotron named DECY-13 for producing radioisotope. That cyclotron has five subsystems and hasn’t established by communication standard protocol yet. In order to make cyclotron communicate effectively, this paper presented the design of data acquisition with OPC (OLE for Process Control) based standard protocol and it has established in DECY-13’s Instrumentation and Control System by case study method. We used Modbus TCP/IP architecture to make all of HMI from five subsystems building communication with each other to Server Computer (OPC Server). OPC Server and OPC Client has configured by NI OPC Server and NI LabVIEW. Data acquisition has monitored by LabVIEW. Configuration of the system for 13 MeV cyclotron and performance test result showed in RMSE value from Reflected Drive Amp Power is  13,94 %, Magnetic Field is 11,2 % ; Forward Final Amp Power is 5,24 % ; Forward Drive Amp Power is 1,98 % ; MPS current is 1,87 % ; Beam Current and A2 Sensor are 1,85 % ; B2 Sensor is 1,77 % ; Bias Current is 1,71%. Based on monitoring and test result, the design of DAQ system has succeeded and established  the communication from several different data types from subsystems with OPC protocol standard


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 600 ◽  
Author(s):  
Jose Miguel Gutierrez-Guerrero ◽  
Juan Antonio Holgado-Terriza

Software technologies play an increasingly significant role in industrial environments, especially for the adoption of Industrial Internet of Things (IIoT). In this context, the application of mechanisms for the auto-configuration of industrial systems may be relevant for reducing human errors and costs in terms of time and money, improving the maintenance and the quality control. OPC UA (OLE for Process Control Unified Architecture) systems are usually integrated into an industrial system to provide a standard way for setting a secure and reliable data exchange between industrial devices of multiple vendors and software systems. In this paper, a novel mechanism for the auto-configuration of OPC UA systems is proposed from an initial setup of industrial devices interconnected to a basic Ethernet network. The auto-configuration of the OPC UA is self-managed over the TCP/IP protocol. This mechanism allows automating the configuration process of the OPC UA server automatically from the programmable logic controller (PLC) devices connected to a basic Ethernet network. Once the PLC devices are identified, they exchange information directly with OPC using a Modbus protocol over the same Ethernet network. To test the feasibility of this approach, a case study is prepared and evaluated.


2018 ◽  
Vol 15 (2) ◽  
pp. 1
Author(s):  
Ranji Gusman ◽  
Sujarwono Sujarwono ◽  
Heri Suherkiman ◽  
Sunarko Sunarko

PERANCANGAN MODIFIKASI SISTEM INSTRUMENTASI DAN KENDALI PADA SISTEM IRADIASI RABBIT HIDROLIK REAKTOR RSG-GAS BERBASIS OPC SERVER DAN LABVIEW. Sistem iradiasi rabbit hidrolik adalah salah satu fasilitas iradiasi yang terletak pada berilium reflektor teras reaktor yang digunakan untuk produksi radioisotop dan Analisa Aktivasi Neutron (AAN). Saat ini sistem iradiasi rabbit hidrolik tersebut, pada sistem instrumentasi dan kendalinya telah menggunakan PLC Siemens S7-300 CPU tipe 315-2DP dengan komunikasi serial MPI sebagai pengendali dan HMI menggunakan perangkat lunak WinCC. Pada sistem tersebut, belum semua parameter operasi diproses PLC dan masih menggunakan perangkat keras untuk melakukan pengaturan waktu iradiasi. Pada tulisan ini, dilakukan perancangan modifikasi sistem instrumentasi dan kendali sistem iradiasi rabbit hidrolik. Metode perancangan dilakukan dengan mempelajari sistem iradiasi rabbit hidrolik, pengumpulan data I/O dan parameter operasi, mengganti dan menambahkan perangkat keras yang diperlukan, pengaturan koneksi PLC dan pembuatan HMI. Pada perancangan dilakukan pengolahan parameter operasi secara keseluruhan seperti data sensor temperature, konduktivitas, level air, dan tekanan serta optimasi PLC Siemens S7-300 dengan mengganti CPU lama dengan CPU baru tipe 315-2PN/DP yang dilengkapi fasilitas komunikasi LAN dan menggunakan antarmuka OPC server. Pada perancangan digunakan perangkat lunak LabVIEW sebagai HMI untuk tampilan pengaturan waktu dan start iradiasi, perekaman data iradiasi, status posisi kapsul iradiasi, status sensor dan visualisasi sistem proses rabbit hidrolik. Kata kunci : perancangan modifikasi, sistem iradiasi rabbit hidrolik, OLE for Process Control (OPC), LabVIEW.


Author(s):  
Fareeza F ◽  
Chunchu Rambabu ◽  
S. Krishnaveni ◽  
Abel Chernet Kabiso

<p>This Paper is to enable the Siemens (Programmable Logic Control) CPU 313-5A to communicate with the Lab VIEW and to control the process accuracy by image processing. The communication between CPU 313-5A and Lab VIEW is via OPC (OLE for Process Control).Process Accuracy is achieved with the use of Labview Image Processing and Gray Scale matching Pattern. Accuracy in the gray scale matching will purely depend on the calibration of the camera with respect to the corresponding image. The digital output from the labview is communicated to PLC via Ethernet Protocol for the industrial process control. With the use of Labview the dead time while using the normal image vision module in PLC can be minimized. Labview uses the gray scale matching technique which is more accurate than the normal image vision module used in PLC.</p>


Author(s):  
F. Fareeza ◽  
Chunchu Rambabu ◽  
S. Krishnaveni ◽  
Abel Chernet Kabiso

<div class="WordSection1"><p>This Paper is to enable the Siemens (Programmable Logic Control) CPU 313-5A to communicate with the Lab VIEW and to control the process accuracy by image processing. The communication between CPU 313-5A and Lab VIEW is via OPC (OLE for Process Control).Process Accuracy is achieved with the use of Labview Image Processing and Gray Scale matching Pattern. Accuracy in the gray scale matching will purely depend on the calibration of the camera with respect to the corresponding image. The digital output from the labview is communicated to PLC via Ethernet Protocol for the industrial process control. With the use of Labview the dead time while using the normal image vision module in PLC can be minimized. Labview uses the gray scale matching technique which is more accurate than the normal image vision module used in PLC.</p></div>


2017 ◽  
Vol 14 (5) ◽  
pp. 172988141772846 ◽  
Author(s):  
Marco A Paz ◽  
Tania A Ramirez-delReal ◽  
Suselle C Garibo ◽  
Dejanira Araiza-Illan ◽  
Carlos A DeLuna-Ortega ◽  
...  

This article presents an implementation of an adaptive control architecture, which provides the combined advantages of better dynamic performance compared to other conventional industrial controllers, and the use of widely available hardware in process industry. Adaptive control architecture uses proportional–integral action and dynamic computation of the controller’s gains (self-tuning regulator), to maintain performance specifications, even in the presence of parametric disturbances. This architecture offers advantages over other advanced embedded control systems implemented on industrial programmable logic controllers and other hardware platforms. Implementation of controllers on industrial hardware platforms is possible through the Object Linking and Embedding (OLE) for process control communication standard. The implementation for an adaptive controller here proposed was evaluated through experiments using first-order and overdamped second-order systems emulated by hardware-in-the-loop, with a programmable automation controller. Performance of the adaptive controllers was compared to that of conventional proportional–integral controllers, and effectiveness of the former over the latter was demonstrated through the experiments carried out.


Prospectiva ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Jesuús Alfonso López Sotelo ◽  
Arturo Duque Marín ◽  
Andrés Felipe Navas

En este trabajo se muestra la implementación en un PLC Allen Bradley de un algoritmo de inteligencia de enjambres cuya función es determinar el modelo matemático de un sistema o proceso; con el modelo del sistema encontrado, se calculan los parámetros de un controlador PID que garantizan un comportamiento deseado del sistema. El algoritmo usado para encontrar el modelo matemático es una técnica de computación evolutiva conocida como optimización por enjambre de partículas.Para probar el funcionamiento del algoritmo implementado en el PLC, se realizaron simulaciones de sistemas dinámicos en el software Matlab, desde este software se estableció comunicación con el PLC. El PLC recibe la salida del sistema y, con esta información, encuentra un modelo del mismo, con el modelo encontrado sintoniza un controlador PID para, de esta manera, calcular la acción de control que enviará al sistema simulado en Matlab. Como estándar de comunicación industrial entre el PLC y  Matlab  se usó el OPC (OLE for Process Control). Lo anterior permitió vislumbrar la  posibilidad de implementar el algoritmo propuesto en una ambiente industrial.


Sign in / Sign up

Export Citation Format

Share Document