Performance Evaluation of Photovoltaic Power-Generation System Equipped With a Cooling Device Utilizing Siphonage

Author(s):  
Kaoru Furushima ◽  
Yutaka Nawata

Recently, the photovoltaic (PV) power generation system has attracted attention as one of clean energies. Especially, residential roofing PV system connected with power grids has been popularized as a result of increasing concerns over global warming and continuing decline in PV manufacturing costs. The power generated by the PV module increases with irradiance, but it decreases as PV module temperature becomes high. The PV temperature depends on ambient temperature, and becomes more than 60°C in summer. Therefore, the power generated does not necessarily increase even if the irradiance increases in summer. However, if the PV modules were cooled under such a high PV temperature condition, more electrical power would be obtained from PV modules. In this study, a PV power generating system equipped with a cooling device has been developed. The major components of the system are an array of PV modules and cooling panels attached to the backside of the PV modules. The respective PV module is cooled with cooling water flowing through a narrow gap in each cooling panel. Hot water discharged from the cooling panel is delivered to a storage tank and can be reused in anywhere. In order to save energy for introducing cooling water into the panel, a siphonage from an upper level of a building to the ground level is utilized. A siphon tube is connected to a discharge port of the cooling panel, thus the pressure at the discharge port becomes negative. Cooling water enters into the bottom end of the cooling panel at atmospheric pressure and goes up to the top, discharge side. By adopting this cooling water system, we could spread the cooling water evenly over the entire backside of the PV module and thus realized an effective cooling device. In addition, we could make the cooling device light and smaller because no auxiliary pumping system is needed for introducing cooling water. To provide field performance data for the present PV power generation system equipped with the special cooling device mentioned above, long-term monitoring tests in a natural environment were conducted in summer for a test facility constructed at the Yatsushiro National College of Technology (YNCT), Japan. As a result, it was confirmed that the cooling of the PV modules increases the electric power and that the reuse of hot water from the cooling panel contributes very much for saving energy consumed for heating water.

2005 ◽  
Vol 128 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Kaoru Furushima ◽  
Yutaka Nawata

In order to construct an efficient photovoltaic (PV) power-generation system, we have developed a new system equipped with a cooling device utilizing siphonage. The major components of the system are an array of PV modules and cooling panels attached to the backside of the PV modules. The PV modules are cooled with cooling water flowing through a narrow gap in each cooling panel, and hot water discharged from the cooling panel can be reused. In order to save energy for introducing cooling water into the panel, siphonage from an upper level of a building to the ground level is utilized. From long-term monitoring tests in summer for the PV system, we confirmed that the cooling of the PV modules increases the electric power and that the reuse of hot water from the cooling panel contributes very much for saving energy consumed in a hot-water-supply system.


Author(s):  
Yingying Zhao ◽  
Aimin An ◽  
Yifan Xu ◽  
Qianqian Wang ◽  
Minmin Wang

AbstractBecause of system constraints caused by the external environment and grid faults, the conventional maximum power point tracking (MPPT) and inverter control methods of a PV power generation system cannot achieve optimal power output. They can also lead to misjudgments and poor dynamic performance. To address these issues, this paper proposes a new MPPT method of PV modules based on model predictive control (MPC) and a finite control set model predictive current control (FCS-MPCC) of an inverter. Using the identification model of PV arrays, the module-based MPC controller is designed, and maximum output power is achieved by coordinating the optimal combination of spectral wavelength and module temperature. An FCS-MPCC algorithm is then designed to predict the inverter current under different voltage vectors, the optimal voltage vector is selected according to the optimal value function, and the corresponding optimal switching state is applied to power semiconductor devices of the inverter. The MPPT performance of the MPC controller and the responses of the inverter under different constraints are verified, and the steady-state and dynamic control effects of the inverter using FCS-MPCC are compared with the traditional feedforward decoupling PI control in Matlab/Simulink. The results show that MPC has better tracking performance under constraints, and the system has faster and more accurate dynamic response and flexibility than conventional PI control.


Solar Energy ◽  
2005 ◽  
Author(s):  
Kaoru Furushima ◽  
Yutaka Nawata ◽  
Michio Sadatomi

PV modules have a problem that the power generated decreases with the rise of the PV module temperature. In order to solve the problem, we recently developed a new PV cooling device utilizing siphonage. In the first report [1] of this series, we presented the experimental results on the PV mounted on an open rack and that the cooling system is effective in both the improvement of the PV efficiency and the reduction of fuel consumption by reusing hot water from the system. In this study, we conducted long-term monitoring tests on the open rack-mount PV system with a cooling panel behind the PV module and with an insulation board (made of foam polystyrene) behind the cooling panel, simulating the residential rooftop PV system. The data obtained in the experiment have been compared with those obtained for the previous system with the cooling panel but without the insulation board. The comparison shows that the increment in energy production after equipping the cooling panel is much more for the present system with the insulation board irrespective of the cooling start temperature, being the PV temperature when cooling water was started to flow. This result suggests that the installation of the cooling system is more useful for the residential rooftop PV system than the open rack-mount system.


2011 ◽  
Vol 121-126 ◽  
pp. 4185-4189
Author(s):  
Gui Xi Jia ◽  
Chun Yan Zhang

In this paper, two kinds of photovoltaic cell’s mathematical model are presented, and their curves of output characteristic are drawn. The MATLAB/SIMULINK model of PV power generation system is based on PV cell's physical equivalent circuit, its mathematical model 2 and PV module YL 120 P-17b/1470×680. Due to the single peak of the output U-P characteristic, PV module has a Maximum Power Point (MPP). The fixed-step and variable-step duty ratio perturbation methods are applied to the model of PV power generation system that has been established for MPPT simulation research in this paper. In addition, the advantage of variable-step duty ratio perturbation method and the important role of the storage battery have been proved by the simulation results.


1983 ◽  
Vol 105 (2) ◽  
pp. 348-353 ◽  
Author(s):  
D. E. Wright ◽  
L. L. Tignac

Rocketdyne is under contract to the Department of Energy for the development of heat exchanger technology that will allow coal to be burned for power generation and cogeneration applications. This effort involves both atmospheric fluidized bed and pulverized coal combustion systems. In addition, the heat exchanger designs cover both metallic and ceramic materials for high-temperature operations. This paper reports on the laboratory and small AFB test results completed to date. It also covers the design and installation of a 6×6 ft atmospheric fluidized bed test facility being used to correlate and expand the knowledge gained from the initial tests. The paper concludes by showing the direction this technology is taking and outlining the steps to follow in subsequent programs.


Sign in / Sign up

Export Citation Format

Share Document