Effect of Design Parameters on the Performance of Thermal Energy Storage Systems

Solar Energy ◽  
2004 ◽  
Author(s):  
Gregor P. Henze

This paper describes simulation-based results of a large-scale investigation of a commercial cooling plant including a thermal energy storage system. A cooling plant with an ice-on-coil system with external melt and a reciprocating compressor operating in a large office building was analyzed under four different control strategies. Optimal control as the strategy that minimizes the total operating cost (demand and energy charges) served as a benchmark to assess the performance of the three conventional controls. However, all control strategies depend on properly selected design parameters. The storage and chiller capacities as the primary design parameters were varied over a wide range and the dependence of the system’s cost saving performance on these parameters was evaluated.

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 120
Author(s):  
Francisco Fernández ◽  
José Díaz ◽  
María Folgueras ◽  
Inés Suárez

Thermal energy storage systems help to couple thermal energy generation and process demand in cogeneration facilities. One single deposit with two design temperatures and one main temperature step in sensible thermal energy storage define the thermocline systems. Performance of one high size real thermocline thermal energy storage system is analysed. Starting from temperature and mass flow rate data registered by the plant control system, one advanced thermodynamic analysis is performed. The quality of heat storage is analysed in terms of evaluation of the stratification in the thermocline zone. The temperature data registered at 21 positions is extended by displacement analysis generating detailed profiles. Fraction of recoverable heat, thermocline width, stratification indices based on energy and exergy analysis, and mean temperature gradients in the thermocline region are calculated. These parameters are monitored under real operation conditions of the plant. The calculated parameters are studied to check their distribution and correlation. First and Second Law indices show parallel behaviour and two values are found that delimit situations of high and low values of mean temperature gradients. It was observed that buoyancy generates uniform forced movement with the right water temperature entering the diffusers, but good control strategies are essential to avoid mixing. The system demonstrated great stability in this use.


Author(s):  
Shobhana Singh ◽  
Kim Sørensen

Abstract In the present paper, a high-temperature packed bed energy storage system of volume 175,000m3 is numerically investigated. The system is a underground packed bed of truncated conical shape, which comprises of rocks as a storage medium and air as a heat transfer fluid. A one-dimensional, two-phase model is developed to simulate the transient behavior of the storage. The developed model is used to conduct a parametric study with a wide range of design parameters to investigate the change in performance during both charging and discharging operation. Results show that the model satisfactorily predicts the dynamic behavior, and the truncated conical shaped storage with a rock diameter of 3cm, insulation thickness up to 0.6m and charging-discharging rate of 553kg/s leads to lower thermal losses and higher energy efficiencies. The paper provides useful insight into the transient performance and efficiency of a large-scale packed bed energy storage system within the range of parameters investigated.


2013 ◽  
Vol 135 (06) ◽  
pp. 36-41
Author(s):  
D. Yogi Goswami ◽  
Sudhakar Neti ◽  
Arun Muley ◽  
George Roe

This article highlights different research efforts to utilize thermal energy and thermal energy storage technologies. At several technical and panel sessions at the November ASME International Mechanical Engineering Congress and Exposition in Houston, there has been much discussion of cutting-edge work in thermal energy storage, including thermal energy storage materials, applications, and systems. Research into thermal energy storage is not limited to the confines of government and academia. Private companies are investigating whether they can incorporate thermal storage into some of their systems. Another potential advantage for solar thermal power is efficiency. Storing thermal energy as sensible heat is the most straightforward of the three methods, and the one that is the most widely deployed. A wide range of materials from simple concrete to synthetic oils has been tried for storing thermal energy. An energy storage system based on latent heat released as a material changes phase can be cost-effective. Thermal energy storage can become a game-changing technology wherever energy demand does not align exactly with energy supply. However, significant development challenges remain before these potential benefits can be realized.


2012 ◽  
Vol 512-515 ◽  
pp. 172-177
Author(s):  
Jian Lan Li ◽  
Ya Wen Zhang ◽  
Yan Ping Zhang ◽  
Shu Hong Huang

Thermal energy storage is the main way to ensure solar power plant to generate electric in the form of stable and continuous. In this paper, a structure optimization model for large-scale, commercialization solar thermal energy storage system is proposed according to life cycle analysis. Based on the analysis of thermal energy storage medium, thermal energy storage tanks, insulation, bottom bearing structure, pump energy and land use, the optimization of thermal energy storage system is realized. Finally, the structure optimization design for 50MW solar power plant is implemented and storage tank’s geometric parameters are calculated. This research can provide technological support for large-scale application of solar thermal generation.


Sign in / Sign up

Export Citation Format

Share Document