scholarly journals Renewable Energy and Disaster-Resistant Buildings

Solar Energy ◽  
2005 ◽  
Author(s):  
William Young

Hurricanes, floods, tornados and earthquakes create natural disasters that can destroy homes, businesses and the natural environment. Such disasters can happen with little or no warning, leaving hundreds or even thousands of people without medical services, potable water, sanitation, communications and electrical services for up to several weeks. The 2004 hurricane season ravaged the State of Florida, U.S.A., with four major hurricanes within a 6-week timeframe. Over nine million people evacuated their homes and damage to property was extensive. One proactive strategy to minimize this type of destruction and disruption to lives is the implementation of disaster-resistant buildings that are functional and operational. This approach uses the best energy-efficient buildings, fortified to the latest codes, and incorporates renewable energy systems. Businesses, government facilities and homes benefit from using photovoltaics to power critical items. This concept is a mitigation tool to reduce damage and cost of the destructive forces of hurricanes and other disasters. This past season’s experience showed that buildings designed and built to the latest standards with photovoltaic and solar thermal systems survived with little damage and continued to perform after the storm passed. Even following a disaster, energy conservation and use of renewables promotes energy assurance while allowing occupants to maintain some resemblance of a normal life.

Author(s):  
Ru-Da Lee ◽  
Hyo-Mun Lee ◽  
Dong-Su Kim ◽  
Jong-Ho Yoon

Abstract Battery systems are one of key factors in the effective use of renewable energy systems because self-production of electricity by renewables for self-consumption has become profitable for building applications. This study investigates the appropriate capacity of the Battery Energy Storage System (BESS) installed in all electric zero energy power houses (AEZEPHs). The AEZEPH used for this study is a high energy-efficient house, and its criteria indicates that all the electricity energy within the house is covered based on the generated electricity from on-site renewable energy systems, including that the annual net site energy use is almost equal than zero. The AEZEPHs used for this study is located in Daejeon, South Korea, and the experiment for measured data of electricity consumed and generated in the buildings is carried out for a year (i.e., Jan. through Dec. 2014). Based on the measured data, patterns of the electricity consumed by the AEZEPH and generated by an on-site renewable energy system (i.e., photovoltaic (PV) system), and the appropriate capacity of BESS is then analyzed and evaluated using the EES analysis tool, named Poly-sun. Results from this study indicate that the self-consumption can be increased up to 66% when the ESS system is installed and used during operated hours of the PV system, and the amount of received electricity during the week tends to be reduced by about two times.


2014 ◽  
Author(s):  
Miles Greiner ◽  
Amy Childress ◽  
Sage Hiibel ◽  
Kwang Kim ◽  
Chanwoo Park ◽  
...  

2017 ◽  
Author(s):  
Emma M. Elgqvist ◽  
Katherine H. Anderson ◽  
Dylan S. Cutler ◽  
Nicholas A. DiOrio ◽  
Nicholas D. Laws ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document