Dual Receiver Concept for Solar Towers up to 100MW

Solar Energy ◽  
2005 ◽  
Author(s):  
R. Buck ◽  
M. Eck ◽  
M. Wittmann

The Dual Receiver Concept presented in this paper improves the adaptation of the central receiver to the steam cycle in a solar thermal power plant. By combination of an open volumetric air heater and a tubular evaporator the Dual-Receiver Concept profits from the advantages of these two concepts while their characteristic problems are avoided. The water is evaporated directly in the tubular steam generator, preheating and superheating is done in heat exchangers by using the hot air from the volumetric receiver (Fig. 1). This paper presents a concept study that extends previous work on the 10 MWel level (Buck et al. 2004) to a level of 100 MWel which is the expected power range of future plants. The results confirm the benefits of the new concept, resulting from higher thermal efficiency of the receiver and lower parasitic power consumption. The annual mean efficiency is increased from 13% to 16%. Advantageous are also the reduced thermal loads in the receiver components.

2005 ◽  
Vol 128 (3) ◽  
pp. 293-301 ◽  
Author(s):  
M. Eck ◽  
R. Buck ◽  
M. Wittmann

The dual receiver concept presented in this paper improves the adaptation of the central receiver to the steam cycle in a solar thermal power plant. By combination of an open volumetric air heater and a tubular evaporator the dual receiver concept profits from the advantages of these two concepts while their characteristic problems are avoided. The water is evaporated directly in the tubular steam generator; preheating and superheating are done in heat exchangers by using the hot air from the volumetric receiver. This paper presents a concept study that extends previous work on the 10MWel level (Buck et al., 2004, “Dual Receiver Concept for Solar Towers,” Proc. 12th Solar PACES Int. Symposium, Oct. 6–8, Oaxaca, Mexico) to a level of 100MWel, which is the expected power range of future plants. The results confirm the benefits of the new concept, resulting from higher thermal efficiency of the receiver and lower parasitic power consumption. The annual mean efficiency is increased from 13% to 16%. Advantageous are also the reduced thermal loads in the receiver components.


2013 ◽  
Vol 724-725 ◽  
pp. 156-162 ◽  
Author(s):  
Jing Qiu Wu ◽  
Dao Fei Zhu ◽  
Hua Wang ◽  
Yong Zhu

The study of heat loss and exergy loss distribution in the power plant system plays a very important role in improving the efficiency of the system. In this paper, a dynamic simulation model of the 5MW solar thermal power system is established. Then, the simulation test with the actual data in a solar thermal power plant is carried out, and we analyze the heat and the exergy loss of the system. The results show that, the heat loss of the condenser is the largest, up to 72%. To increase the thermal efficiency of the system, the energy-saving research for the condenser should be pay attention to. The solar collector field has the most of exergy loss in the system, accounting for approximately 89%. From the exergy efficiency perspective, the solar collector system has huge potential for energy- saving. The thermal efficiency and exergy efficiency of a solar thermal power plant system increases as the load increases, full-load operation of the unit should be maintained as much as possible.


2012 ◽  
Vol 232 ◽  
pp. 609-613
Author(s):  
Ali Baghernejad ◽  
Mahmood Yaghoubi

In the present study, a specific and simple second law based exergoeconomic model with instant access to the production costs is introduced. The model is generalized for a case study of Shiraz solar thermal power plant with parabolic collectors for nominal power supply of 500 kW. Its applications include the evaluation of utility costs such as products or supplies of production plant, the energy costs between process operations of an energy converter such as production of an industry. Also attempt is made to minimize objective function including investment cost of the equipments and cost of exergy destruction for finding optimum operating condition for such plant.


Sign in / Sign up

Export Citation Format

Share Document