The Start-Up Performance of Pulsating Heat Pipe With Communicating Pipe at Different Inclination Angles

Author(s):  
Fu-Min Shang ◽  
Shi-Long Fan ◽  
Jian-Hong Liu

Abstract The pulsating heat pipe (PHP) is a passive cooling device, which has the advantages of simple structure, high heat transfer performance and low production cost. The complex vapor-liquid phase change occurs in the in the initial stage of PHP. In this work, we explore the start-up performance of PHP at different inclination angles and the experiment shows that start-up performance is respectively different when the angles are 0°, 45°, 90°, 135° and 180°. Since the gravitational auxiliary function, the working fluid in the communicating pipe which takes longer time to vaporize change phase earlier than that in PHP’s loop when the angles are 0° and 45°. Nevertheless, when the angle is 90°, the phase change of working fluid in communicating pipe and in the loop occurs at the same time. Meanwhile, the oscillating mode affects the stability of the starting and heat transfer performance of the PHP.

2015 ◽  
Vol 88 ◽  
pp. 391-397 ◽  
Author(s):  
Hui Li ◽  
Bo Zhou ◽  
Yong Tang ◽  
Rui Zhou ◽  
Zhongshan Liu ◽  
...  

Author(s):  
Lilin Chu ◽  
Yulong Ji ◽  
Chunrong Yu ◽  
Yantao Li ◽  
Hongbin Ma ◽  
...  

Abstract In order to understand the heat transfer performance, startup and fluid flow condition of oscillating heat pipe (OHP) with hydraulic diameter far exceeding the maximum hydraulic diameter (MHD), an experimental investigation on heat transfer performance and visualization was conducted. From the experimental performance, it is found that the OHP can still work well with ethanol as the working fluid when the tube diameter has exceeded the MHD of 91.6%. In addition, the detailed flow patterns of the OHP were recorded by a highspeed camera for vertical and horizontal orientation to understand its physical mechanism. In the vertical orientation, initially working fluid generates small bubbles, and then the small bubbles coalesce and grow to vapor plugs, the vapor plugs finally pushes the liquid slugs to oscillate in the tube. In the horizontal orientation, the working fluid surface fluctuates due to the vapors flow from the evaporator to the condenser and bubbles burst in the evaporator. When the peak of liquid wave reaches the upper surface of tube, a liquid slug has been formed, and then the steam flow pushes the liquid slugs to oscillate in the tube.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Tingting Hao ◽  
Hongbin Ma ◽  
Xuehu Ma

A new oscillating heat pipe (OHP) charged with hybrid fluids can improve thermal performance. The key difference in this OHP is that it uses room temperature liquid metal (Galinstan consisting of gallium, indium, and tin) and water as the working fluid. The OHP was fabricated on a copper plate with six turns and a 3 × 3 mm2 cross section. The OHP with hybrid fluids as the working fluid was investigated through visual observation and thermal measurement. Liquid metal was successfully driven to flow through the OHP by the pressure difference between the evaporator and the condenser without external force. Experimental results show that while added liquid metal can increase the heat transport capability, liquid metal oscillation amplitude decreases as the filling ratio of liquid metal increases. Visualization of experimental results show that liquid metal oscillation position and velocity increase as the heat input increases. Oscillating motion of liquid metal in the OHP significantly increases the heat transfer performance at high heat input. The lowest thermal resistance of 0.076 °C/W was achieved in the hybrid fluids-filled OHP with a heat input of 420 W. We experimentally demonstrated a 13% higher heat transfer performance using liquid metal as the working fluid compared to an OHP charged with pure water.


2013 ◽  
Vol 589-590 ◽  
pp. 559-564
Author(s):  
Xi Bing Li ◽  
Yun Shi Ma ◽  
Xun Wang ◽  
Ming Li

As a highly efficient heat transfer component, a micro heat pipe (MHP) has been widely applied to the situations with high heat flux concentration. However, a MHPs heat transfer performance is affected by many factors, among which, working fluid inventory has great influence on the security, reliability and frost resistance of its heat transfer performance. In order to determine the appropriate working fluid inventory for grooved MHPs, this paper first analyzed the working principle, major heat transfer limits and heat flux distribution law of grooved MHPs in electronic chips with high heat flux concentration, then established a mathematic model for the working fluid inventory in grooved MHPs. Finally, with distilled water being the working fluid, a series of experimental investigations were conducted at different temperatures to test the heat transfer performances of grooved MHPs, which were perfused with different inventories and with different adiabatic section lengths. The experimental results show that when the value of α is roughly within 0.40±0.05, a grooved MHP can acquire its best heat transfer performance, and the working fluid inventory can be determined by the proposed mathematic model. Therefore this study solves the complicated problem of determining appropriate working fluid inventory for grooved MHPs.


Sign in / Sign up

Export Citation Format

Share Document