Frictional Pressure Drops During Vapour-Liquid Flow in Minichannels: Experimental Data and Modelling

Author(s):  
Alberto Cavallini ◽  
Davide Del Col ◽  
Marko Matkovic ◽  
Luisa Rossetto

Condensation in minichannels is widely used in air-cooled condensers for the automotive and air-conditioning industry, in heat pipes and other applications for cooling electronics. The knowledge of pressure drops in such small channels is important in order to optimize heat transfer surfaces. Most of the available experimental work refers to measurements obtained within multiport smooth extruded tubes and deal with the average values over the number of parallel channels. In this context, the present authors have set up a new test apparatus for heat transfer and fluid flow studies in single minichannels. This paper presents new experimental frictional pressure gradient data, relative to single-phase flow and adiabatic two-phase flow of R134a inside a single horizontal mini tube, with 0.96 mm inner diameter and with not-negligible surface roughness. The new all-liquid and all-vapour data are successfully compared against predictions of single-phase flow models. Also the two-phase flow data are compared against Cavallini et al. [1, 2] model, valid for adiabatic flow or for flow during condensation of halogenated refrigerants inside smooth minichannels. Surface roughness effects on the liquid-vapour flow are discussed. In this respect, the friction factor in the proposed model is modified, in order to take into consideration also effects due to wall roughness.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Alberto Cavallini ◽  
Davide Del Col ◽  
Marko Matkovic ◽  
Luisa Rossetto

Condensation in minichannels is widely used in air-cooled condensers for the automotive and air-conditioning industry, heat pipes, and compact heat exchangers. The knowledge of pressure drops in such small channels is important in order to optimize heat transfer surfaces. Most of the available experimental work refers to measurements obtained within multiport smooth extruded tubes and deal with the average values over the number of parallel channels. In this context, the present authors have set up a new test apparatus for heat transfer and fluid flow studies in single minichannels. This paper presents new experimental frictional pressure gradient data, relative to single-phase flow and adiabatic two-phase flow of R134a and R32 inside a single horizontal minitube, with a 0.96 mm inner diameter and with not-negligible surface roughness. The new all-liquid and all-vapor data are successfully compared against predictions of single-phase flow models. Also the two-phase flow data are compared against a model previously developed by the present authors for adiabatic flow or flow during condensation of halogenated refrigerants inside smooth minichannels. Surface roughness effects on the liquid-vapor flow are discussed. In this respect, the friction factor in the proposed model is modified, in order to take into consideration also effects due to wall roughness.


Author(s):  
Suizheng Qiu ◽  
Minoru Takahashi ◽  
Guanghui Su ◽  
Dounan Jia

Water single-phase and nucleate boiling heat transfer were experimentally investigated in vertical annuli with narrow gaps. The experimental data about water single-phase flow and boiling two-phase flow heat transfer in narrow annular channel were accumulated by two test sections with the narrow gaps of 1.0mm and 1.5mm. Empirical correlations to predict the heat transfer of the single-phase flow and boiling two-phase flow in the narrow annular channel were obtained, which were arranged in the forms of the Dittus-Boelter for heat transfer coefficients in a single-phase flow and the Jens-Lottes formula for a boiling two-phase flow in normal tubes, respectively. The mechanism of the difference between the normal channel and narrow annular channel were also explored. From experimental results, it was found that the turbulent heat transfer coefficients in narrow gaps are nearly the same to the normal channel in the experimental range, and the transition Reynolds number from a laminar flow to a turbulent flow in narrow annuli was much lower than that in normal channel, whereas the boiling heat transfer in narrow annular gap was greatly enhanced compared with the normal channel.


Author(s):  
Toshimichi Arai ◽  
Naoki Kudo ◽  
Tsuneaki Ishima ◽  
Ismail M. Youssef ◽  
Tomio Obokata ◽  
...  

Characteristics on particle motion in a liquid-solid two-phase jet flow were studied in the paper. The water jet including glass particle of 389 μm in mean diameter was injected into water bath. The experimental conditions were 0.21% of initial particle volume ratio, 5mm in pipe diameter and 1.84 m/s of mean velocity on outlet of the jet. A laser Doppler anemometer (LDA) with size discrimination was applied for measuring the time serious velocities of the single-phase flow, particle and water phase flow. A particle image velocimetry (PIV) was also applied in the two-phase flow. The normal PIV method can hardly measure the particle size and perform the particle size discrimination. In the experiment, using the gray scales related with the scattering light intensity, measuring method with size discrimination in two-phase flow was carried out. The experimental results show less difference between velocities of single-phase flow and water-phase flow under this low particle volume ratio condition. Particles have the relative motion with the water-phase and large rms velocity. The PIV used in this experiment, which is called multi-intensity-layer-PIV: MILP, can measure water-phase velocity with good accuracy.


Author(s):  
Jiang Nai-bin ◽  
Gao Li-xia ◽  
Huang Xuan ◽  
Zang Feng-gang ◽  
Xiong Fu-rui

In steam generators and other heat exchangers, there are a lot of tube bundles subjected to two-phase cross-flow. The fluctuating pressure on tube bundle caused by turbulence can induce structural vibration. The experimental data from a U-tube bundle of steam generator in air-water flow loop are analyzed in this work. The different upper bounds of buffeting force are used to calculate the turbulence buffeting response of U-tubes, and the calculation results are compared with the experimental results. The upper bounds of buffeting force include one upper bound based on single-phase flow, and two upper bounds based on two-phase flow. It is shown that the upper bound based on single-phase flow seriously underestimated the turbulence excitation, the calculated vibration response is much less than the experimental measurement. On the other hand, the vibration response results calculated with the upper bounds based on two-phase flow are closer to the measured results under most circumstances.


Author(s):  
Sira Saisorn ◽  
Somchai Wongwises ◽  
Piyawat Kuaseng ◽  
Chompunut Nuibutr ◽  
Wattana Chanphan

The investigations of heat transfer and fluid flow characteristics of non-boiling air-water flow in micro-channels are experimentally studied. The gas-liquid mixture from y-shape mixer is forced to flow in the 21 parallel rectangular microchannels with 40 mm long in the flow direction. Each channel has a width and a depth of 0.45 and 0.41 mm, respectively. Flow visualization is feasible by incorporating the stereozoom microscope into the camera system and different flow patterns are recorded. The experiments are performed under low superficial velocities. Two-phase heat transfer gives better results when compared with the single-phase flow. It is found from the experiment that heat transfer enhancement up to 53% is obtained over the single-phase flow. Also, the change in the configuration of the inlet plenum can result in the different two-phase flow mechanisms.


Author(s):  
Olivier Brunin ◽  
Geoffrey Deotto ◽  
Franck David ◽  
Joe¨l Pillet ◽  
Gilles Dague ◽  
...  

After a period of several years of operation, steam generators can be affected by fouling and clogging. Fouling means that deposits of sludge accumulate on tubes or tube support plates (TSP). That results in a reduction of heat exchange capabilities and can be modelled by means of a fouling factor. Clogging is a reduction of flow free area due to an accumulation of sludge in the space between TSP and tubes. The increase of the clogging ratio results in an increase of the overall TSP pressure loss coefficient. The link between the clogging ratio and the overall TSP pressure loss coefficient is the most important aspect of our capability to accurately calculate the thermal-hydraulics of clogged steam generators. The aim of the paper is to detail the experimental approach chosen by EDF and AREVA NP to address the calculation uncertainties. The calculation method is classically based on the computation of a single-phase (liquid-only) pressure loss coefficient, which is multiplied by a two-phase flow factor. Both parameters are well documented and can be derived on the basis of state of the art methods such as IDEL’CIK diagrams and CHISHOLM formula. The experimental approach consists of a validation of the correlations by performing tests on a mock-up section with an upward flow throughout a vertical array of tubes. A mixture of water and vapour refrigerant R116 is used to represent two-phase flows. The tube bundle is composed of a 25 tubes array in a square arrangement. The overall height of the mock-up is 2 m. Eight test TSPs were manufactured, considering eight different clogging configurations: six plates with a typical clogging profile at six clogging ratios (0, 44%, 58%, 72%, 86%, 95%), and two plates with a clogging ratio of 72% associated with two different clogging profiles (large bending radius profile and rectangular profile). A series of tests were performed in 2009 in single-phase flow conditions. Two-phase flow tests with a mixture of liquid water and vapour refrigerant R116 will be performed in 2010. The paper illustrates the main results obtained during the single-phase tests performed in 2009.


Sign in / Sign up

Export Citation Format

Share Document