Acoustic Emission Condition Monitoring of the Coroning Process

Author(s):  
Juil Yum ◽  
Amir Kamouneh ◽  
Wencai Wang ◽  
Elijah Kannatey-Asibu

Acoustic emission (AE) is introduced for tool condition monitoring during the coroning process. The frequency components of the AE signal were used as features for classification. Two different feature selection methods were investigated, namely visual observation and the class mean scatter criterion. The minimum error rate Bayesian rule was used to distinguish between two extreme tool conditions. Although the features from visual observation could result in 100% classification, features based on the class mean scatter criterion showed excellent monitoring capability of tool failure when fewer features were used.

2014 ◽  
Vol 984-985 ◽  
pp. 25-30
Author(s):  
Muniyandi Prakash ◽  
P. Ravisankar ◽  
Mani Kanthababu

In this study, the effect of tool wear is correlated with acoustic emission (AE) signal during microendmilling of aluminium alloy (AA 1100). The AE signals were acquired using Kistler make AE sensor and the signal features are analyzed in time domain (root mean square (RMS)) and frequency domain (dominant frequency and amplitude). The dominant frequency of the AE signal shows increasing trend with increase in the tool wear, where as AERMSshow uneven trend. The discrete wavelet transformation technique (DWT) has also been carried out by decomposing the required AE signal in different frequency bands. The AERMSand specific AE energy were computed for the decomposed AE signals. From the specific AE energy, it is observed that shearing occurs during microendmilling and also found to be similar that of macro-regieme endmilling. The result demonstrated that the AE signals are potential indicator for tool condition monitoring in microendmilling.


1999 ◽  
Vol 8 (3) ◽  
pp. 096369359900800 ◽  
Author(s):  
P. S. Sreejith ◽  
R. Krishnamurthy

During manufacturing, the performance of a cutting tool is largely dependent on the conditions prevailing over the tool-work interface. This is mostly dependent on the status of the cutting tool and work material. Acoustic emission studies have been performed on carbon/phenolic composite using PCD and PCBN tools for tool condition monitoring. The studies have enabled to understand the tool behaviour at different cutting speeds.


2014 ◽  
Vol 255 ◽  
pp. 121-134 ◽  
Author(s):  
Qun Ren ◽  
Marek Balazinski ◽  
Luc Baron ◽  
Krzysztof Jemielniak ◽  
Ruxandra Botez ◽  
...  

2014 ◽  
Vol 984-985 ◽  
pp. 31-36 ◽  
Author(s):  
A. Gopikrishnan ◽  
A.K. Nizamudheen ◽  
M. Kanthababu

In this work, an online acoustic emission (AE) monitoring system is developed, to investigate the effect of tool wear during the microturning of titanium alloy with a tungsten carbide insert of nose radius 0.1 mm. The AE signal parameters were analyzed in time domain, frequency domain and discrete wavelet transformation (DWT) techniques to correlate with the tool wear status. The root mean square (AERMS) and specific AE energies are also computed for the decomposed AE signals, using the DWT. The results demonstrated that dominant frequency and DWT techniques are found to be most suitable for online tool condition monitoring, using AE sensors in the microturning of titanium alloy.


Sign in / Sign up

Export Citation Format

Share Document