Deformation Analysis of Multi-Stage Incremental Sheet Forming

Author(s):  
Zhen Cui ◽  
Feng Ren ◽  
Z. Cedric Xia ◽  
Lin Gao

This paper presents an analytical and numerical study of deformation analysis for multistage incremental sheet forming processes, with a truncated conical part is used as an example. Unlike in the single-pass incremental forming where the sheet deformation is dominantly plane strain in the axial direction when forming a conical part, the sheet is also deformed in the circumferential direction when it is incrementally formed subsequently. Ideal deformation kinetics is assumed in the analytical derivations of strain distributions, which should be valid as long as the increment in deformation from one stage to the next is small. Numerical simulations with LS-DYNA are also conducted in an effort to understand the fundamental deformation mechanics of multistage incremental forming. The simulation result for a five-stage incremental forming process is presented. It is also used to correlate the analytical solution. An improved analytical equation for strain distributions is derived, which compares favorably with simulation results.

Author(s):  
Rui Xu ◽  
Huaqing Ren ◽  
Zixuan Zhang ◽  
Rajiv Malhotra ◽  
Jian Cao

Incremental sheet forming has attracted considerable attention in the recent past due to advantages that include high process flexibility and higher formability as compared to conventional forming processes. However, attaining required geometric accuracy of the formed part is one of the major issues plaguing this process. The Double-Sided Incremental Forming process has emerged as a potential process variant which can preserve the process flexibility while maintaining required geometric accuracy. This paper investigates a mixed toolpath for Double-Sided Incremental Forming which is able to simultaneously achieve good geometric accuracy and higher throughput than is currently possible. The geometries of parts formed using the mixed toolpath strategy are compared to the desired geometry. Furthermore, an examination of the forming forces is used to uncover the reasons for experimentally observed trends. Future work in this area is also discussed.


2013 ◽  
Vol 554-557 ◽  
pp. 1419-1431 ◽  
Author(s):  
Daniel Fritzen ◽  
Anderson Daleffe ◽  
Jovani Castelan ◽  
Lirio Schaeffer

This work addresses through bibliographies and experiments the behavior of sheet brass 70/30 for Incremental Sheet Forming process - ISF, based on the parameters: wall angle (), step vertical (ΔZ) strategy and the way the tool. Experiments based on the method called Single Point Incremental Forming - SPIF. For execution of practical tests, we used the resources: software CAD / CAM, CNC machining center with three axles, matrix incremental, incremental forming tool and a device press sheets. Furthermore, measurement was made of the true deformation () and thickness (s1). Practical tests have shown that the spiral machining strategy yielded a greater wall angle, compared to the conventional strategy outline.


Author(s):  
Ashish Gohil ◽  
Bharat Modi

Incremental sheet forming process has developed the interest of researchers in the field of sheet metal forming due to high formability and capability to produce prototypes of new products at low cost and minimum lead time. Research work is going on in various front to enhance the process capabilities so that it can be explored for commercial production. In this article, progress and recent development in the field of incremental forming has been reviewed and presented for the benefit of practicing engineers and industry. The effect of various process parameters on the performance of the process have been summarized in this paper. Moreover, the issues which need attention are discussed towards the conclusion of this paper.


2018 ◽  
Vol 178 ◽  
pp. 02004 ◽  
Author(s):  
Daniel Nasulea ◽  
Gheorghe Oancea

In incremental sheet forming processes, the expensive dedicated tool are avoided and replaced with a cheap and simple fixing device which support the sheet metal blanks. The current paper presents how a fixing device used for single point incremental forming device is designed, FEM simulated and manufactured. The fixing device can be used for parts with a cone frustum and pyramidal frustum made of DC05 deep drawing steel. The forces developed in the process and the device displacements were estimated using FEM simulation. The device components were manufactured using a CNC machines and the physical assembly is also presented in the paper.


2007 ◽  
Vol 344 ◽  
pp. 503-510 ◽  
Author(s):  
S. He ◽  
J. Gu ◽  
Hugo Sol ◽  
Albert Van Bael ◽  
Paul van Houtte ◽  
...  

A simplified method to determine the strain distribution during incremental forming of a cone is proposed in this paper. Because of the symmetry of the deformed part, the strain can be derived using the results obtained from a limited number of consecutive tool contours instead of going through the whole process. Comparisons made between the measured and simulated results show that the proposed method can be applied to determine the strain encountered in such kind of incremental forming process where axi-symmetric parts are formed.


2016 ◽  
Vol 861 ◽  
pp. 195-200
Author(s):  
Yan Le Li ◽  
Jie Sun ◽  
Jian Feng Li

Investigation of forming forces in incremental sheet forming (ISF) is of great importance since it provides understanding of the deformation mechanics, monitoring of the forming process, failure prediction, and future means of on-line control and optimization. This paper provides a review of studies on the contact conditions and the effects of the process parameters on forming forces in ISF, followed by the current status on forming force prediction and its potential role in the improvement of ISF technology.


Author(s):  
Abdulmajeed Dabwan ◽  
Adham E Ragab ◽  
Mohamed A Saleh ◽  
Atef M Ghaleb ◽  
Mohamed Z Ramadan ◽  
...  

Incremental sheet forming is a specific group of sheet forming methods that enable the manufacture of complex parts utilizing computer numerical control instead of specialized tools. It is an incredibly adaptable operation that involves minimal usage of sophisticated tools, dies, and forming presses. Besides its main application in the field of rapid prototyping, incremental sheet forming processes can be used for the manufacture of unique parts in small batches. The goal of this study is to broaden the knowledge of the deformation process in single-point incremental forming. This work studies the deformation behavior in single-point incremental forming by experimentally investigating the principal stresses, principal strains, and thinning of single-point incremental forming products. Conical-shaped components are fabricated using AA1050-H14 aluminum alloy at various combinations of fundamental variables. The factorial design is employed to plan the experimental study and analysis of variance is conducted to analyze the results. The grey relational analysis approach coupled with entropy weights is also implemented to identify optimum process variables for single-point incremental forming. The results show that the tool diameter has the greatest effect on the thinning of the SPIF product, followed by the sheet thickness, step size, and feed rate.


2021 ◽  
Vol 883 ◽  
pp. 217-224
Author(s):  
Yannick Carette ◽  
Marthe Vanhulst ◽  
Joost R. Duflou

Despite years of supporting research, commercial use of the Single Point Incremental Forming process remains very limited. The promised flexibility and lack of specific tooling is contradicted by its highly complex deformation mechanics, resulting in a process that is easy to implement but where workpiece accuracy is very difficult to control. This paper looks at geometry compensation as a viable control strategy to increase the accuracy of produced workpieces. The input geometry of the process can be compensated using knowledge about the deformations occurring during production. The deviations between the nominal CAD geometry and the actual produced geometry can be calculated in a variety of different ways, thus directly influencing the compensation. Two different alignment methods and three deviation calculation methods are explained in detail. Six combined deviation calculation methods are used to generate compensated inputs, which are experimentally produced and compared to the uncompensated part. All different methods are able to noticeably improve the accuracy, with the production alignment and closest point deviation calculation achieving the best results


Sign in / Sign up

Export Citation Format

Share Document