A numerical study on establishing the forming limit curve and indicating the formability of complex shape in incremental sheet forming process

2013 ◽  
Vol 14 (12) ◽  
pp. 2087-2093 ◽  
Author(s):  
Duc-Toan Nguyen ◽  
Young-Suk Kim

2007 ◽  
Vol 344 ◽  
pp. 511-518 ◽  
Author(s):  
Markus Bambach ◽  
M. Todorova ◽  
Gerhard Hirt

Asymmetric incremental sheet forming (AISF) is a relatively new manufacturing process for the production of low volumes of sheet metal parts. Forming is accomplished by the CNC controlled movements of a simple ball-headed tool that follows a 3D trajectory to gradually shape the sheet metal blank. Due to the local plastic deformation under the tool, there is almost no draw-in from the flange region to avoid thinning in the forming zone. As a consequence, sheet thinning limits the amount of bearable deformation, and thus the range of possible applications. Much attention has been given to the maximum strains that can be attained in AISF. Several authors have found that the forming limits are considerably higher than those obtained using a Nakazima test and that the forming limit curve is approximately a straight line (mostly having a slope of -1) in the stretching region of the FLD. Based on these findings they conclude that the “conventional” forming limit curves cannot be used for AISF and propose dedicated tests to record forming limit diagrams for AISF. Up to now, there is no standardised test and no evaluation procedure for the determination of FLCs for AISF. In the present paper, we start with an analysis of the range of strain states and strain paths that are covered by the various tests that can be found in the literature. This is accomplished by means of on-line deformation measurements using a stereovision system. From these measurements, necking and fracture limits are derived. It is found that the fracture limits can be described consistently by a straight line with negative slope. The necking limits seem to be highly dependent on the test shapes and forming parameters. It is concluded that standardisation in both testing conditions and the evaluation procedures is necessary, and that a forming limit curve does not seem to be an appropriate tool to predict the feasibility of a given part design.





2005 ◽  
Vol 6-8 ◽  
pp. 457-464 ◽  
Author(s):  
L. Lamminen

Incremental sheet forming (ISF) has been a subject of research for many research groups before. However, all of the published results so far have been related to either commercial ISF machines or ISF forming with NC mills or similar. The research reported in this paper concentrates on incremental sheet forming with an industrial robot. The test equipment is based on a strong arm robot and a moving forming table, where a sheet metal blank is attached. The tool slides on the surface of the sheet and forms it incrementally to the desired shape. The robot is capable of 5-axis forming, which enables forming of inwards curved forms. In this paper the forming limit diagram (FLD) for ISF with the robot is presented and it is compared with conventional forming limit diagrams. It will be shown that the conventional FLD does not apply to incremental forming process. Geometrical accuracy of sample pieces is also studied. Cones of different shapes are formed with the robot equipment and their correspondence with the 3D CAD model is evaluated. The results are compared with other results of accuracy of incremental sheet forming, reported earlier by other researchers. The third issue covered in this article is a product development point of view to incremental sheet forming. In addition to fast prototyping and low volume production of sheet metal parts, ISF brings new possibilities to sheet metal component design and manufacturing. These possibilities can only be exploited if design rules, that will take the possibilities and limitations of the method into account are created for ISF.



Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1129 ◽  
Author(s):  
Lirong Sun ◽  
Zhongyi Cai ◽  
Dongye He ◽  
Li Li

A new method, by directly utilizing original measured data (OMD) of the stress–strain relation in the Marciniak–Kuczynski (M–K) model, was proposed to predict the forming limit curve (FLC) of an aluminum alloy sheet. In the groove zone of the M–K model, by establishing the relations of the equivalent strain increment, the ratio of shear stress to the first principle stress and the ratio of the second principle stress to the first principle stress, the iterative formula was established and solved. The equations of theoretical forming limits were derived in detail by using the OMD of the stress–strain relation. The stretching specimens of aluminum alloy 6016-T4 were tested and the true stress–strain curve of the material was obtained. Based on the numerical simulations of punch-stretch tests, the optimized specimens’ shape and test scheme were determined, and the tests for FLC were carried out. The FLC predicted by the proposed method was more consistent with the experimental results of FLC by comparing the theoretical FLCs based on OMD of the stress–strain relation and of that based on traditional power function. In addition, the influences of anisotropic parameter and groove angle on FLCs were analyzed. Finally, the FLC calculated by the proposed method was applied to analyze sheet formability in the stretch-forming process, and the predicted results of FLC were verified by numerical simulations and experiments. The fracture tendency of the formed parts can be visualized in the forming limit diagram (FLD), which has certain guiding significance for fracture judgment in the sheet-forming process.



2012 ◽  
Vol 622-623 ◽  
pp. 484-488
Author(s):  
Ramil Kesvarakul ◽  
Suwat Jiratheranat ◽  
Bhadpiroon Sresomroeng

The aims of this research are to establish the forming limit curve (FLC) of tubular material low carbon steels commonly used in Thai industry, verify these FLCs with real part forming experiments and compare these experimentally obtained FLCs against analytical ones available in FEA software database. A self-designed bulge forming apparatus of fixed bulge length and a hydraulic test machine with axial feeding are used to carry out the bulge tests. Loading paths resulting to linear strain paths at the apex of the bulging tube are determined by FE simulations in conjunction with a self-compiled subroutine. These loading paths are used to control the internal pressure and axial feeding punch of the test machine. In this work a common low carbon steel tubing grade STKM 11A, with 28.6 mm outer diameter and 1.2 mm thick is studied. Circular grids are electro chemically etched onto the surface of tube samples. Subsequently, the tube samples are bulge-formed. The forming process is stopped when a burst is observed on the forming sample. After conducting the bulge tests, major and minor strains of the grids located beside the bursting line on the tube surface are measured to construct the forming limit curve (FLC) of the tubes. The forming limit curves determined for these tubular materials are put to test in formability evaluations of test parts forming in real experiment. It was found that the tool geometry can keep the strain ratio constant is not dependent on the thickness but only on OD of the tube, as in equations L=OD and rd=(15xOD)/25.4. The experimen-tal FLDs have predicted failures in forming process consistently with the real experiments. The ex-perimentally obtained forming limit curves (determined following STKM 11A) differ from empiri-cal one (from FEA software) and analytical one by about 0.02339 and 0.15736 true strain respec-tively at FLD0, the corresponding plane strain values.



1986 ◽  
Vol 108 (3) ◽  
pp. 245-249 ◽  
Author(s):  
V. Vujovic ◽  
A. H. Shabaik

The forming limit curves are important aids in determining the extent of deformation a material can be subjected to during a forming process. In this paper a forming limit criterion for bulk metalworking processes, based on the magnitude of the hydrostatic component and the effective stress of the state of stress, is proposed. The determination of the forming limit curve by means of three simple tests, namely, tension, compression, and torsion tests, is presented.



2012 ◽  
Vol 504-506 ◽  
pp. 47-52
Author(s):  
Christian Hezler ◽  
Marion Merklein ◽  
Joachim Hecht ◽  
Bernd Griesbach

The evaluation of forming simulation by using the forming limit curve has only limited validity if it is applied on car body components with non-linear strain paths. If modern high strength materials are used, the forming limit criteria can also provide invalid predictions. Especially high strength multiphase steels show a specific behaviour in forming, necking and crack initiation. If bending loads are applied to these materials, the onset of cracking occurs partially not within the range of the forming limit curve (FLC). The stress limit indicates the failure beginning more accurate. It is independent of the forming history and should be less sensitive to the behaviour of high strength steels. In the post processing of a simulation it could be used similar to the forming limit. A limit curve applied on the in-plane-stress-diagram of an analysed component defines areas that are more vulnerable for cracking. The required stress limit curve will be obtained in this research by applying a stretch-bending-test. It is selected in order to reach loads, which are comparable to the forming process in the components’ production. The forming state that is affecting the specimen is a combination of bending and stretching load. Different load conditions can be applied at the test by altering the stamp-radius and the specimen geometry. Since stresses cannot be measured directly in the experiment, the test is modelled in the simulation where the stresses can be calculated for a given material model. Finally the stress limit criterion was applied on the test parts’ stress distribution diagram. Occurring stresses above the stress limit curve are displayed on the simulation. Thereby it is possible to show a good correlation in critical areas between the failure prediction in the simulation and occurring rupture on the test component.



Author(s):  
Zhen Cui ◽  
Feng Ren ◽  
Z. Cedric Xia ◽  
Lin Gao

This paper presents an analytical and numerical study of deformation analysis for multistage incremental sheet forming processes, with a truncated conical part is used as an example. Unlike in the single-pass incremental forming where the sheet deformation is dominantly plane strain in the axial direction when forming a conical part, the sheet is also deformed in the circumferential direction when it is incrementally formed subsequently. Ideal deformation kinetics is assumed in the analytical derivations of strain distributions, which should be valid as long as the increment in deformation from one stage to the next is small. Numerical simulations with LS-DYNA are also conducted in an effort to understand the fundamental deformation mechanics of multistage incremental forming. The simulation result for a five-stage incremental forming process is presented. It is also used to correlate the analytical solution. An improved analytical equation for strain distributions is derived, which compares favorably with simulation results.



2010 ◽  
Vol 97-101 ◽  
pp. 126-129 ◽  
Author(s):  
Ghulam Hussain ◽  
Gao Lin ◽  
Nasir Hayat ◽  
Nameem Ullah Dar ◽  
Asif Iqbal

Straight groove test is a widely-used formability test in Single Point Incremental Forming (SPIF). This test does not cover all the forming aspects of SPIF process, however. In order to ascertain its legitimacy, two new tests covering necessary SPIF aspects are devised. The FLC of an aluminum sheet is determined using the newly proposed and straight groove tests. It is found that the straight groove test shows much lower formability than the new tests. Therefore, the employment of newly devised test(s) is proposed for the determination of precise formability limits.



2015 ◽  
Vol 766-767 ◽  
pp. 416-421
Author(s):  
S. Vijayananth ◽  
V. Jayaseelan ◽  
G. Shivasubbramanian

Formability of a material is defined as its ability to deform into desired shape without being fracture. There will always be a need for formability tests, a larger number of tests have been used in an effort to measure the formability of sheet materials. Aluminium Alloy 6061 is a magnesium and silicon alloy of aluminium. It is also called as marine material as it has high corrosion resistance to seawater. In this paper Formability test of AA6061 sheet is done by Forming Limit Diagram (FLD) Analysis. FLD or Forming Limit Curve (FLC) for the forming processes of AA6061 sheets is obtained by Experimental method and FEM. Experimental method involves Deep drawing test of the sheet and ANSYS software is used for FEM.



Sign in / Sign up

Export Citation Format

Share Document