Modeling and Experimental Study of the Impact on Free Abrasive Machining (FAM) due to Vibration of a Thin Wire Subject to an Oscillating Boundary Condition

Author(s):  
Liming Li ◽  
Imin Kao

Abstract This paper investigates the impact on free abrasive machining (FAM) process using a vibrating wire with an oscillating boundary condition. The experimental results show that the vibration of wire in slurry with abrasive grits can result in material removal due to FAM on brittle material. We present a theoretical model of a wire moving axially at a constant speed, subject to an oscillating boundary condition with damping, and derive an analytical solution of the partial differential equation of motion. Based on the modeling and analysis, the frequency of vibration of wire corresponds to the frequency at the oscillating boundary at steady state. The damping factor suppresses the lateral movement of wire from the fixed boundary to moving boundary when it is increased. The change of axial wire speed or the oscillating frequency at boundary can counteract the suppression on the vibration response induced by increased damping factor. This study also presents an experimental study using an experimental setup of a slurry-fed wire with a periodic excitation to study the FAM process on silicon. The results of experiments show that vibration of wire can impart the silicon carbide abrasive grits in slurry to generate observable grooves and fractures on the surface of silicon in just a few minutes. The grooves and fractures are generated by the indentation of abrasive grits via loading and unloading on the silicon surface. When the vibrating wire is only fed with water without abrasives or under a dry condition, compressive deformation with shallow grooves on silicon is observed; however, the surface is found to be free of surface features of indentation and scratching. Furthermore, evidence of both wire compression and abrasive machining is more pronounced at the edges of silicon specimen, especially at the edge close to the periodic excitation, which is consistent to our modeling.

2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Liming Li ◽  
Imin Kao

Abstract In this paper, we study experimentally the impact of a vibrating wire on the free abrasive machining (FAM) process in removing material from the surface of brittle materials, such as silicon. An experimental setup was designed to study the FAM process on silicon substrate surface by using a slurry-fed wire with a periodic excitation. An analytical solution of a wire moving axially, subject to an oscillating boundary condition with damping from abrasive slurry, was derived based on the partial differential equation of motion. Experiments were conducted on the apparatus using a wire with an oscillating boundary. It was found that the amplitudes of vibration were larger at the side of the oscillatory boundary, which caused more FAM interaction near the edge of the oscillatory boundary with larger material removal that was measured and validated. Furthermore, experiments were conducted to elucidate the effectiveness of brittle material removal using FAM with abrasive grits: (i) under dry condition, (ii) with water, and (iii) with abrasive slurry. Experimental results showed that the vibration of wire resulted in plastic deformation on the surface of silicon wafer. The abrasive grits in slurry driven by a vibrating wire generated material removal through observable grooves and fractures on the surface of silicon due to FAM in just a few minutes. The grooves from FAM process is an outcome of brittle machining through fracture formation and concatenation, generated by the indentation of abrasive grits on the silicon surface.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2020 ◽  
Author(s):  
V. L. Kocharin ◽  
A. A. Yatskikh ◽  
D. S. Prishchepova ◽  
A. V. Panina ◽  
Yu. G. Yermolaev ◽  
...  

2003 ◽  
Vol 22 (2) ◽  
pp. 87-93
Author(s):  
James Otto ◽  
Mohammad Najdawi ◽  
William Wagner

With the extensive growth of the Internet and electronic commerce, the issue of how users behave when confronted with long download times is important. This paper investigates Web switching behavior. The paper describes experiments where users were subjected to artificially delayed Web page download times to study the impact of Web site wait times on switching behavior. Two hypotheses were tested. First, that longer wait times will result in increased switching behavior. The implication being that users become frustrated with long waiting times and choose to go elsewhere. Second, that users who switch will benefit, in terms of decreased download times, from their decision to switch.


Fuel ◽  
2019 ◽  
Vol 235 ◽  
pp. 374-383 ◽  
Author(s):  
Chaohui Lyu ◽  
Zhengfu Ning ◽  
Mingqiang Chen ◽  
Qing Wang

Measurement ◽  
2021 ◽  
Vol 172 ◽  
pp. 108950
Author(s):  
Onur Can Kalay ◽  
Oğuz Doğan ◽  
Tufan Gürkan Yılmaz ◽  
Celalettin Yüce ◽  
Fatih Karpat

Sign in / Sign up

Export Citation Format

Share Document