Anchor Deployment Planning Using Simulated Annealing

Author(s):  
Oscar Brito Augusto

In this work a planning methodology for deep-water anchor deployment of anchor lines for offshore platforms and floating production systems aiming at operational resources optimization is explored, by minimizing a multi criteria objective function. A Simulated Annealing Algorithm was used to optimize the objective function. As an additional advantage, inherited from the proposed methodology, the planning automation is achieved. Planning automation overcomes the traditional way based on trial error exercise, where an engineer using an anchoring application, decides how much of work wire and anchoring line must be paid out from both the floating system and the supply boat and additionally which horizontal force must be applied to the line trying settle the anchor on a previously defined target in the ocean floor. Some cases, from anchor deployment of some MODUs operating in deep-water oil fields in Brazil, are shown demonstrating some potentialities of the proposed model.

Author(s):  
Safiye Turgay

Facility layout design problem considers the departments’ physcial layout design with area requirements in some restrictions such as material handling costs, remoteness and distance requests. Briefly, facility layout problem related to optimization of the layout costs and working conditions. This paper proposes a new multi objective simulated annealing algorithm for solving of the unequal area in layout design. Using of the different objective weights are generated with entropy approach and used in the alternative layout design. Multi objective function takes into the objective function and constraints. The suggested heuristic algorithm used the multi-objective parameters for initialization. Then prefered the entropy approach determines the weight of the objective functions. After the suggested improved simulated annealing approach applied to whole developed model. A multi-objective simulated annealing algorithm is implemented to increase the diversity and reduce the chance of getting layout conditions in local optima.


2021 ◽  
Vol 18 (6) ◽  
pp. 8314-8330
Author(s):  
Ningning Zhao ◽  
◽  
Mingming Duan

<abstract> <p>In this study, a multi-objective optimized mathematical model of stand pre-allocation is constructed with the shortest travel distance for passengers, the lowest cost for airlines and the efficiency of stand usage as the overall objectives. The actual data of 12 flights at Lanzhou Zhongchuan Airport are analyzed by application and solved by simulated annealing algorithm. The results of the study show that the total objective function of the constructed model allocation scheme is reduced by 40.67% compared with the actual allocation scheme of the airport, and the distance traveled by passengers is reduced by a total of 4512 steps, while one stand is saved and the efficiency of stand use is increased by 31%, in addition to the reduction of airline cost by 300 RMB. In summary, the model constructed in the study has a high practical application value and is expected to be used for airport stand pre-allocation decision in the future.</p> </abstract>


2010 ◽  
Vol 113-116 ◽  
pp. 2373-2378
Author(s):  
Ji Bin Ding

The belt conveyor is a transporting machine by friction in a continuous manner. The two order helical gearing reducer may be generally used as conveyor transmission, and can reduce speed and increase torque of belt. The objective function may be specified that that total center distance of the reducer incline to minimum, so the optimization model including the property and boundary constraints is created. Then the objective function with penalty terms is converted by penalty strategy with addition type, so as to transform the constrained optimization into the unconstrained optimization model. Considering the problem of low efficiency and local optimum caused by standard optimization methods, the simulated annealing algorithm is adopted to solve the optimization model of Belt Conveyor Transmission, and neural network method is applied to fit relative coefficient, then BFGS Quasi-Newton method is recalled automatically when the setting working precision is achieved again. So that the optimization process is simplified and global optimum is acquired reliably.


Sign in / Sign up

Export Citation Format

Share Document