Alternative Boundary-Integral Representations of Ship Waves

Author(s):  
Francis Noblesse ◽  
Chi Yang ◽  
Dane Hendrix ◽  
Rainald Lo¨hner

The fundamental problem of determining the free-surface potential flow that corresponds to a given flow at a ship hull surface is reconsidered. Stokes’ theorem is used to transform the dipole distribution over the ship hull surface in the classical boundary-integral representation of the velocity potential. This Stokes’ transformation yields a weakly-singular boundary-integral representation that defines the potential in terms of the Green function G and related functions that are no more singular than G. Accordingly, the velocity representation only involves functions that are no more singular than ∇G.

Author(s):  
Chunmei Xie ◽  
Aurélien Babarit ◽  
François Rongère ◽  
Alain H. Clément

A new acceleration technique for the computation of first order hydrodynamic coefficients for floating bodies in frequency domain and in deep water is proposed. It is based on the classical boundary element method (BEM) which requires solving a boundary integral equation for distributions of sources and/or dipoles and evaluating integrals of Kelvin’s Green function and its derivatives over panels. The Kelvin’s Green function includes two Rankine sources and a wave term. In present study, for the two Rankine sources, analytical integrations of strongly singular kernels are adopted for the linear density distributions. It is shown that these analytical integrations are more accurate and faster than numerical integrations. The wave term is obtained by solving Clément’s ordinary differential equations (ODEs) [1] and an adaptive numerical quadrature is performed for integrations over the panels. It is shown here that the computational time of the wave term by solving the ODEs is greatly reduced compared to the classical integration method [7].


Sign in / Sign up

Export Citation Format

Share Document