Probabilistic S-N Fatigue Assessment Methods for Welded Joints in Offshore Structures

Author(s):  
A. Muhammed ◽  
A. Stacey

A study of probabilistic fatigue assessment methods for offshore structures confirmed that fatigue life predictions for offshore welded joints is dominated by uncertainties in hot spot stress estimation, arising from uncertainties in nominal stress and stress concentration factors. Analysis of data from previous fatigue studies on North Sea jacket structures conducted in the late 1980s suggests that nominal stresses are, in general, overestimated by about 30% and the COV of the bias is about 0.35. The study demonstrated that in-service fatigue failure probability is not only dependent on the COV but also on the median bias of the nominal stress range. A number of nominal stress COVs are recommended with associated median values for general offshore application. Distributions are also suggested for other variables such as Miner’s damage sum and the S-N design curve coefficients. Methods based on long-term stress range distribution with random parameters to cater for uncertainties in stress estimation are described and example calculations are given.

Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 125-133
Author(s):  
Sudath C. Siriwardane ◽  
Nirosha D. Adasooriya ◽  
Dimitrios Pavlou

Offshore structures are subjected to dynamic environmental loads (wave and wind loads). A stress-life fatigue strength curve is proposed for tubular joints which are in the splash zone area of offshore jacket structures. The Det Norske Veritas (DNV) offshore structures standards given design T-curve in the air is modified with the environment-dependent parameters to obtain this fatigue strength curve. Validity of the curve is done by comparing fatigue lives given by the proposed curve with experimental fatigue lives of tubular joints tested in seawater under different loading conditions. The fatigue assessment of a case study tubular joint is performed using the proposed curve. Nominal stress ranges of the members, which are connected to the joint, are obtained by dynamic analysis of the jacket structure. Stress concentration factors are utilized with the nominal stresses to obtain the hot spot stress ranges. Fatigue lives are calculated and compared with the conventional approach. Hence the applicability and significance of the proposed fatigue strength curve are discussed.


Author(s):  
Jürgen Rudolph ◽  
Ralf Trieglaff ◽  
René Stößlein ◽  
Fabian Hauser

The fatigue assessment of welded joints in different engineering disciplines is usually based on nominal, structural or notch stresses on one hand (elastic concept using component fatigue curves of load controlled test data) and local strains on the other hand (elasto-plastic concept using material fatigue curves of strain-controlled push-pull test data of un-notched and polished standard specimens). The concepts of the first mentioned group are implemented in widespread standards and recommendations such as [1] to [3]. The fatigue assessment procedure of the European standard for unfired pressure vessels (EN 13445-3, Clause 17 & 18 and related annexes) [4] is currently under revision with one focus on the elaboration of user friendly fatigue assessment options for welded components [5]. The current state of the art focuses on the application of an adapted structural hot spot stress approach to the fatigue assessment of welded pressure equipment [5]. Although this is a significant step forward, the implementation of a notch stress approach can furtherly increase the fatigue assessment options by detailed weld seam analysis. The paper focuses on respective methodological proposals and application examples of typical welded joints. The finite element analysis as part of the procedure has to be harmonized with the requirements of the assessment procedure. Of course, the compatibility of the hot spot stress approach and a notch stress approach has to be guaranteed for individual examples. The direct comparison of the different approaches allows for a qualitative evaluation of methods. The application of an appropriate master fatigue curve FAT100 and the limitations with regard of stress/strain ranges in the low cycle fatigue (LCF) regime as well as the fatigue assessment of welded joints with mild weld toe notches is the subject of special considerations. The latest recommendations of German Welding Society (DVS) [6] constitute a reference for the last two subjects raised.


Author(s):  
Ba˚rd Wathne Tveiten ◽  
Stig Berge ◽  
Xiaozhi Wang

This paper presents a robust methodology for fatigue assessment of aluminum ship details using a hot-spot stress range approach. A series of fatigue tests of a typical aluminum ship detail was carried out to obtain a design S-N curve. The test detail was analyzed by the finite element method (FEM) using several modeling techniques and element types. Recommendations are given on finite element modeling practice, extrapolation methods and design S-N curves.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Bård Wathne Tveiten ◽  
Stig Berge ◽  
Xiaozhi Wang

This paper presents a robust methodology for fatigue assessment of aluminum ship details using a hot-spot stress range approach. A series of fatigue tests of a typical aluminum ship detail was carried out to obtain a design S–N curve. The test detail was analyzed by the finite element method using several modeling techniques and element types. The results from both experimental tests and finite element analysis are discussed. Recommendations on the procedure of fatigue assessment of aluminum ships including S–N curve to be used are also presented.


2017 ◽  
Vol 9 (1) ◽  
pp. 9-24 ◽  
Author(s):  
Andreas TARAS ◽  
Harald UNTERWEGER

The fatigue design life of welded joints in steel structures is increasingly assessed by using numerical models and methods, such as the structural (hot-spot) stress method and the effective notch stress method. When compared to the classical design approach using nominal stress S-N design curves, these methods offer the advantage of flexibility and a wider scope of application. However, a number of questions arise when these methods are used to assess geometrically "imperfect" welded joints, such as joints with plate misalignments or excessive weld convexity or concavity. In these cases, the classical S-N curves are known to cover imperfections up to the common tolerance classes for fatigue-prone welded joints (e.g. in accordance with ISO 5817 class B). For the numerical methods, differing and conflicting recommendations exist on how to account for the geometric imperfections in the welded joints, with little or no background to these recommendations available. In this paper, a study is presented in which two standard welded joints (butt welds between plates of equal and unequal thickness; T-joints with fillet welds) are analysed with the help of the structural (hot-spot) stress and the effective notch stress approach, considering various levels of geometric imperfection up to the tolerance limits, and the resulting fatigue life predictions are compared to test results from the literature and the nominal stress approach predictions. Since the nominal stress approach curves are based on reliable statistical data and desired survival probabilities for these known, standard cases, this methodology allows one to determine the correct application of the numerical methods to cases with geometric imperfections. This information may be used for a pertinent refinement of design recommendations for these methods, as well as for cases where these methods are applied to fitness-for-purpose assessments - e.g. because the nominal stress approach is not applicable.


Author(s):  
Mikkel L. Larsen ◽  
Vikas Arora ◽  
Marie Lützen ◽  
Ronnie R. Pedersen ◽  
Eric Putnam

Abstract Several methods for modelling and finite element analysis of tubular welded joints are described in various design codes. These codes provide specific recommendations for modelling of the welded joints, using simple weld geometries. In this paper, experimental hot-spot strain range results from a full-scale automatically welded K-node test are compared to corresponding finite element models. As part of investigating the automatically welded K-joint, 3D scans of the weld surfaces have been made. These scans are included in the FE models to determine the accuracy of the FE models. The results are compared to an FE model with a simple weld geometry based on common offshore design codes and a model without any modelled weld. The results show that the FE model with 3D scanned welds is more accurate than the two simple FE models. As the weld toe location of the 3D scanned weld is difficult to locate precisely in the FE model and as misplacement of strain gauges are possible, stochastic finite element modelling is performed to analyse the resulting probabilistic hot-spot stresses. The results show large standard deviations, showing the necessity to evaluate the hot-spot stress method when using 3D scanned welds.


Sign in / Sign up

Export Citation Format

Share Document