nominal stress
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
pp. 136943322110646
Author(s):  
Yang Huang ◽  
Shiming Chen ◽  
Ping Gu

Ultrahigh-performance concrete-orthotropic steel composite bridge deck is composed of the orthotropic steel deck and a thin ultrahigh-performance concrete (UHPC) overlayer. In the previous fatigue tests, two typical fatigue failure modes were found and identified. As a supplementary test after fatigue tests, air penetration method is capable of providing a reference to the quantitative and non-destructive damage detection of fatigue damage of UHPC. To further the previous study, a detailed numerical investigation is accomplished through complimentary finite element (FE) analysis. Compared with the solid element model, the refined shell-solid element model can better reflect the mechanical behavior. It is illustrated that the vertical stress can be adopted in assessing the fatigue strength of rib-to-diaphragm welded connection in the field test by means of nominal stress method. The combination of various factors would lead to fatigue shear failure of the short headed-studs. The fatigue strength of rib-to-diaphragm welded connection predicted by the hot spot stress method and the consistent nominal stress (CNS) method can basically meet the requirements of FAT90. The consistent nominal stress method can be used as the optimization method of nominal stress of fatigue detail. It is demonstrated that the fatigue life of UHPC can be estimated by S-N curves of ordinary concrete conservatively. The allowable equivalent maximum stress level can be taken as 0.55 for two million cycles of fatigue loading, and 0.52 for five million cycles of fatigue loading.


Author(s):  
S. Rahimi ◽  
I. Violatos

Abstract Background Determination of near-surface residual stresses is challenging for the available measurement techniques due to their limitations. These are often either beyond reach or associated with significant uncertainties. Objective This study describes a critical comparison between three methods of surface and near-surface residual stress measurements, including x-ray diffraction (XRD) and two incremental central hole-drilling techniques one based on strain-gauge rosette and the other based on electronic speckle pattern interferometry (ESPI). Methods These measurements were performed on standard four-point-bend beams of steel loaded to known nominal stresses, according to the ASTM standard. These were to evaluate the sensitivity of different techniques to the variation in the nominal stress, and their associated uncertainties. Results The XRD data showed very good correlations with the surface nominal stress, and with superb repeatability and small uncertainties. The results of the ESPI based hole-drilling technique were also in a good agreement with the XRD data and the expected nominal stress. However, those obtained by the strain gauge rosette based hole-drilling technique were not matching well with the data obtained by the other techniques nor with the nominal stress. This was found to be due to the generation of extensive compressive residual stress during surface preparation for strain gauge installation. Conclusion The ESPI method is proven to be the most suitable hole-drilling technique for measuring near-surface residual stresses within distances close to the surface that are beyond the penetration depth of x-ray and below the resolution of the strain gauge rosette based hole-drilling method.


Author(s):  
Sourav Gur ◽  
George N Frantziskonis

The synthetic uncertainty (SU) method is introduced and applied to the optimal design of energy absorbing NiTi shape memory alloy (SMA) bars. A sensitivity analysis for a large number of stochastic parameters identifies geometrical grading, porosity, and imposed maximum nominal stress as critical design parameters for the energy dissipation capacity of the bars. Parametric uncertainty on the optimal design of the energy absorber is incorporated and estimated through the SU formalism. The SU method provides a unified approach to discover the critical design parameters, quantify uncertainty, and optimally design a system around its extreme response (maximum or minimum). Therefore, the SU method is placed next to the robust design optimization (RDO) process, yet with a discovery component. It is found that variations in porosity and shape factor can significantly alter the stress-strain response and energy dissipation capacity. For a given value of maximum nominal stress, it is found that there exists an optimal combination of shape factor and porosity which maximizes the energy dissipation capacity of a tapered and porous NiTi bar.


Author(s):  
Chun Lu ◽  
Jiliang Mo ◽  
Hongqin Liang

Welded joints are widely employed in engineering field and they are always the starting points of fatigue damage. Because of the unfavorable material and geometry characters, as well as initial welding defects, the fatigue damage evaluation of welded joints is an important and troublesome issue for engineers. In this article, multiaxial fatigue space theory proposed by the first author for smooth specimens is extended for the fatigue damage assessment of welded joints, by adopting nominal stress approach. The fatigue test data with different materials, loading paths, and welded joints geometries are used to validate the capability of this theory. The result indicates a strong parallelization between predicted life and experimental life, with a favorable prediction error and beneficial error distribution. It can be concluded that multiaxial fatigue space theory is a useful method for fatigue damage assessment of welded joints with the help of nominal stress approach.


2020 ◽  
Vol 37 (2) ◽  
pp. 135-139 ◽  
Author(s):  
Hong-Zhong Huang ◽  
Cheng-Geng Huang ◽  
Zhaochun Peng ◽  
Yan-Feng Li ◽  
Hengsu Yin

AbstractFan blade is one of the key parts used in aircraft engine and its failure is mainly caused by fatigue fracture. This paper aims to predict fatigue life of fan blade during its service operation. First, the effective load and stress of fan blade are obtained by using finite element analysis and simulation. Second, the fatigue notch factor of fan blade is determined by using the nominal stress method. Then, the material properties of fan blade are used to correct and obtain the $S - N$ curve of fan blade. Finally, according to the actual load spectrum of three working loading cycles in 900h, the Miner’s damage accumulation rule is employed to predict the fatigue life of fan blade.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 744 ◽  
Author(s):  
Mikel Armentia ◽  
Mikel Abasolo ◽  
Ibai Coria ◽  
Joseba Albizuri

Fatigue is the most common mechanical failure type in dental implants. ISO 14801 standardizes fatigue testing of dental implants, providing the load-life curve which is most useful for comparing the fatigue behavior of different dental implant designs. Based on it, many works were published in the dental implant literature, comparing different materials, component geometries, connection types, surface treatments, etc. These works are useful for clinicians in order to identify the best options available in the market. The present work is intended not for clinicians but for dental implant manufacturers, developing a design tool that combines Finite Element Analysis, fatigue formulation and ISO 14801 experimental tests. For that purpose, 46 experimental tests were performed on BTI INTERNA® IIPSCA4513 implants joined with INPPTU44 abutments by means of INTTUH prosthetic screws under three different tightening torque magnitudes. Then, the load case was reproduced in a FE model from where the nominal stress state in the fatigue critical section was worked out. Finally, Walker criterion was used to represent accurately the effects of mean stress and predict fatigue life of the studied dental implant assembly, which can be extended to most of the products of BTI manufacturer. By means of this tool, dental implant manufacturers will be able to identify the critical design and assembly parameters in terms of fatigue behavior, evaluate their influence in preliminary design stages and consequently design dental implants with significantly better fatigue response which in turn will reduce future clinical incidences.


2020 ◽  
pp. 39-44
Author(s):  
Karolina Głowacka ◽  
Tadeusz Łagoda

The paper presents methods for determining the fatigue life of welded joints with particular emphasis given to typical joints. In addition, the article presents various possible nominal stress-based ways enabling the calculation of stresses, including structural stresses and involving the most complex linear fracture mechanics. The paper also discusses recommendations by the International Institute of Welding related to the determination of the fatigue life of welded joints in flat elements exposed to tension-compression conditions. The work is focused on assessing the fatigue life of welded joints (selected types) in accordance with the guidelines specified in related recommendations issued by the International Institute of Welding and taking into consideration the analysis concerned with the safety of such structures.


Sign in / Sign up

Export Citation Format

Share Document