Global Hydroelastic Analysis of Pontoon-Type VLFS

Author(s):  
L. L. Jiao ◽  
M. Greco ◽  
O. M. Faltinsen

A two-dimensional composite strategy given by Greco et al. [1] is applied to couple a linear global solution with a nonlinear local analysis. Globally a linear hydroelastic analysis is performed by an accurate Beam-On-Elastic-Foundation (BOEF) method. A parameter analysis of hydroelastic response of the structure is also carried out. Locally, a two-dimensional fully-nonlinear numerical wave tank (NWT) in combination with a Boundary Element Method (BEM) is developed to estimate the interaction between regular waves and the structure restrained from rigid and elastic motions. The effect of air cushion is considered. Present results are compared with experimental data and other numerical solutions.

2018 ◽  
Vol 170 ◽  
pp. 89-99 ◽  
Author(s):  
Fábio M. Marques Machado ◽  
António M. Gameiro Lopes ◽  
Almerindo D. Ferreira

2018 ◽  
Vol 21 (3) ◽  
pp. 325-341
Author(s):  
Deepak D. Prasad ◽  
M. R. Ahmed ◽  
Young-Ho Lee ◽  
Rajnish N. Sharma

2012 ◽  
Vol 256-259 ◽  
pp. 1960-1964
Author(s):  
Feng Jin

In order to study the specialties of wave slamming on open-piled structures, a two-dimensional regular wave tank was established based on commercial CFD software FLUENT. Three typical cases of regular wave slamming on the open-piled structures were reproduced by using the numerical wave tank and compared with the experimental data available. Good agreements were obtained between the numerical and experimental results and the average of peak impact pressure was chosen as the characteristic impact pressure. Then regular wave impact pressure on the open-piled structures under various wave height, period and over height were simulated. The influences of the three parameters on the distribution of impact pressure were analyzed.


Sign in / Sign up

Export Citation Format

Share Document