Statistical Uncertainty Analysis in the Long-Term Distribution of Wind- and Wave-Induced Hot-Spot Stress for Fatigue Design of Jacket Wind Turbine Based on Time Domain Simulations

Author(s):  
WenBin Dong ◽  
Torgeir Moan ◽  
Zhen Gao

The statistical uncertainty of the long-term distribution of wind- and wave-induced hot-spot stress ranges in multi-planar tubular joints of a fixed jacket offshore wind turbine designed for a North Sea site in a water depth of 70m has been assessed in this paper. The dynamic response of the jacket support structure due to wind and wave loads is calculated using a decoupled procedure. Hot-spot stresses at failure-critical locations of each reference brace for 4 different tubular joints (DK, DKT, X-type) are derived by summation of the single stress components from axial, in-plane and out-plane action. The effects of planar and non-planar braces are also considered. A two-parameter Weibull function is used to fit the long-term statistical distribution of hot-spot stress ranges by combination of time domain simulation for representative environmental conditions (wind / sea states) in operational condition of the wind turbine. The statistical uncertainty of the Weibull distribution of hot-spot stress ranges and the two parameters defining the Weibull distribution is assessed, based on 20 simulations for each representative environmental condition. The contributions to the uncertainty from wind loads and wave loads are analyzed by considering 3 different load cases: wind loads only, wave loads only and combination of wind and wave loads. The sensitivity of the long-term distribution of hot-spot stress ranges due to their stress components is also assessed.

Author(s):  
Bryan Nelson ◽  
Yann Quéméner ◽  
Tsung-Yueh Lin ◽  
Hsin-Haou Huang ◽  
Chi-Yu Chien

This study evaluated, by time-domain simulations, the fatigue life of the jacket support structure of a 3.6 MW wind turbine operating in Fuhai Offshore Wind Farm. The long-term statistical environment was based on a preliminary site survey that served as the basis for a convergence study for an accurate fatigue life evaluation. The wave loads were determined by the Morison equation, executed via the in-house HydroCRest code, and the wind loads on the wind turbine rotor were calculated by an unsteady BEM method. A Finite Element model of the wind turbine was built using Beam elements. However, to reduce the time of computation, the hot spot stress evaluation combined FE-derived Closed-Form expressions of the nominal stresses at the tubular joints and stress concentration factors. Finally, the fatigue damage was assessed using the Rainflow Counting scheme and appropriate SN curves. Based on a preliminary sensitivity study of the fatigue damage prediction, an optimal load setting of 60-min short-term environmental conditions with one-second time steps was selected. After analysis, a sufficient fatigue strength was identified, but further calculations involving more extensive long-term data measurements are required in order to confirm these results. Finally, this study highlighted the sensitivity of the fatigue life to the degree of fluctuation (standard deviation) of the wind loads, as opposed to the mean wind loads, as well as the importance of appropriately orienting the jacket foundations according to prevailing wind and wave conditions.


2021 ◽  
Author(s):  
Carlos Eduardo Silva de Souza ◽  
Nuno Fonseca ◽  
Petter Andreas Berthelsen ◽  
Maxime Thys

Abstract Design optimization of mooring systems is an important step towards the reduction of costs for the floating wind turbine (FWT) industry. Accurate prediction of slowly-varying horizontal motions is needed, but there are still questions regarding the most adequate models for low-frequency wave excitation, and damping, for typical FWT concepts. To fill this gap, it is fundamental to compare existing load models against model tests results. This paper describes a calibration procedure for a three-columns semi-submersible FWT, based on adjustment of a time-domain numerical model to experimental results in decay tests, and tests in waves. First, the numerical model and underlying assumptions are introduced. The model is then validated against experimental data, such that the adequate load models are chosen and adjusted. In this step, Newman’s approximation is adopted for the second-order wave loads, using wave drift coefficients obtained from the experiments. Calm-water viscous damping is represented as a linear and quadratic model, and adjusted based on decay tests. Additional damping from waves is then adjusted for each sea state, consisting of a combination of a wave drift damping component, and one component with viscous nature. Finally, a parameterization procedure is proposed for generalizing the results to sea states not considered in the tests.


Author(s):  
Yung S. Shin ◽  
Booki Kim ◽  
Alexander J. Fyfe

A methodology for calculating the correlation factors to combine the long-term dynamic stress components of ship structure from various loads in seas is presented. The methodology is based on a theory of a stationary ergodic narrow-banded Gaussian process. The total combined stress in short-tem sea states is expressed by linear summation of the component stresses with the corresponding combination factors. This expression is proven to be mathematically exact when applied to a single random sea. The long-term total stress is similarly expressed by linear summation of component stresses with appropriate combination factors. The stress components considered here are due to wave-induced vertical bending moment, wave-induced horizontal bending moment, external wave pressure and internal tank pressure. For application, the stress combination factors are calculated for longitudinal stiffeners in cargo and ballast tanks of a crude oil tanker at midship section. It is found that the combination factors strongly depend on wave heading and period in the short-term sea states. It is also found that the combination factors are not sensitive to the selected probability of exceedance level of the stress in the long-term sense.


2011 ◽  
Vol 90-93 ◽  
pp. 2521-2527
Author(s):  
Gang Qiang Li ◽  
Yan Yan Zhao ◽  
Yong He Xie

In a typical load condition of wind power equipment Installation ship, using the three-dimensional potential flow theory to prediction the long-term response of wave induced loads. then using the main load control parameters as a basis for the design wave selection, then application of DNV's SESTRA program make the wave-induced directly to the structure to finite element simulation. The results show that the hull structural design can meet the requirements.


Author(s):  
Timothe´e Perdrizet ◽  
Daniel Averbuch

This paper describes and exemplifies an efficient methodology to assess, jointly and in a single calculation, the short and long terms failure probabilities associated to the extreme response of a floating wind turbine, subjected to wind and wave induced loads. This method is applied to the realistic case study OC3-Hywind used in phase IV of the IEA (International Energy Agency) Annex XXIII Offshore Code Comparison Collaboration. The key point of the procedure, derived from the outcrossing approach, consists in computing the mean of the outcrossing rate of the floating wind turbine response in the failure domain over both the short term variables and the ergodic variables defining long term parameters.


2013 ◽  
Vol 371 ◽  
pp. 443-447
Author(s):  
Ionica Rubanenco ◽  
Iulia Mirciu ◽  
Leonard Domnisoru

This paper is focused on an advanced method for ship structures fatigue assessment. The ships classification societies standard rules for fatigue analysis are based on simplified procedures, with wave induced loads obtained by linear oscillation analysis (low frequency, around 0.1 Hz), or equivalent statistical wave loads. In the case of large elastic ship structures, with hull length over 150 m, the global wave induced vibration response (high frequency, around 1 Hz) becomes significant. The developed integrated method for large ships fatigue assessment includes three interlinked analyses, as follows: the hot-spot stresses evaluation by 3D finite element models, wave induced loads by short term linear and non-linear hydroelastic dynamic analysis, ship service life and fatigue assessment by damage cumulative ratio method. As testing ship, it is considered a double hull LPG Liquefied Petroleum Gas carrier, with total length 239 m, for a set of structural details with stress hot-spots. Based on the non-linear hydroelastic wave loads, the integrated method of fatigue assessment becomes more accurate, predicting for the amidships structure 14 years of ship service life, instead of over 20 years according to the rules standard approach, so that the confidence on ship structure fatigue evaluation can be increased in the design process.


Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 125-133
Author(s):  
Sudath C. Siriwardane ◽  
Nirosha D. Adasooriya ◽  
Dimitrios Pavlou

Offshore structures are subjected to dynamic environmental loads (wave and wind loads). A stress-life fatigue strength curve is proposed for tubular joints which are in the splash zone area of offshore jacket structures. The Det Norske Veritas (DNV) offshore structures standards given design T-curve in the air is modified with the environment-dependent parameters to obtain this fatigue strength curve. Validity of the curve is done by comparing fatigue lives given by the proposed curve with experimental fatigue lives of tubular joints tested in seawater under different loading conditions. The fatigue assessment of a case study tubular joint is performed using the proposed curve. Nominal stress ranges of the members, which are connected to the joint, are obtained by dynamic analysis of the jacket structure. Stress concentration factors are utilized with the nominal stresses to obtain the hot spot stress ranges. Fatigue lives are calculated and compared with the conventional approach. Hence the applicability and significance of the proposed fatigue strength curve are discussed.


Author(s):  
Kazuhiro Iijima ◽  
Junghyun Kim ◽  
Masahiko Fujikubo

A numerical procedure for the fully coupled aerodynamic and hydroelastic time-domain analysis of an offshore floating wind turbine system including rotor blade dynamics, dynamic motions and flexible deflections of the structural system is illustrated. For the aerodynamic analysis of wind turbine system, a design code FAST developed by National Renewable Energy Laboratory (NREL) is employed. It is combined with a time-domain hydroelasticity response analysis code ‘Shell-Stress Oriented Dynamic Analysis Code (SSODAC)’ which has been developed by one of the authors. Then, the dynamic coupling between the rotating blades and the structural system under wind and wave loads is taken into account. By using this method, a series of analysis for the hydroelastic response of an offshore large floating structure with two rotors under combined wave and wind loads is performed. The results are compared with those under the waves and those under the winds, respectively, to investigate the coupled effects in terms of stress as well as motions. The coupling effects between the rotor-blades and the motions are observed in some cases. The impact on the structural design of the floating structure, tower and blade is addressed.


Sign in / Sign up

Export Citation Format

Share Document