longitudinal stiffeners
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 21)

H-INDEX

10
(FIVE YEARS 3)

Author(s):  
D Chichì ◽  
Y Garbatov

The objective of the present study is to investigate the possibility to recover the ultimate strength of a rectangular steel plate with a manhole shape opening subjected to a uniaxial compressive load and non-uniform corrosion degradation reinforced by additional stiffeners. Finite element analyses have been carried out to verify the possible design solutions. A total of four finite element models are generated, including 63 sub-structured models. The non-uniform corrosion has been generated by the Monte Carlo simulation. The reinforcement process covers three scenarios that include mounting of two longitudinal stiffeners, two longitudinal and two transverse stiffeners and the flange on the opening. The positioning of the stiffeners has also been studied. A total of 10 cases has been selected and tested for the numerical experiment. Three different assessments have been performed to evaluate the ultimate strength, weight and cost. Two additional studies on the effect of the plate thickness and slenderness have been also carried out.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ozgur Ozguc

The occurrence of cracks in the hull structure of oil tankers is an important concern for the maritime industry because crack propagation will reduce collapse strength of deck-stiffened panels and, consequently, decrease the ultimate hull girder capacity of ship’s structures.  Fatigue is an important design criteria for ships to ensure a sufficiently high safety level. Fatigue life predictions of ship’s structural details have traditionally been carried out using S-N approach and the Palmgren-Miner’s rule. The principal objective of such approach is to estimate the time to failure in order to ensure a satisfactory design lifetime of ship’s structural components. Potential cracks are considered to occur in the side shell, in the connections between longitudinal stiffeners and transverse web frame. The main objectives of the present study are to evaluate the fatigue life of vessel’s amidships using the simplified fatigue method, which is based on DNVGL-CG-0129 “Fatigue Assessment of Ship Structures” in order to determine the main cause of the observed cracks on the single skin oil tanker. Fatigue assessment was based on worldwide trade. Longitudinal stiffeners at transverse frames amidships are considered. The results show that fatigue life is generally above 20 years; however, analysis has revealed that the fatigue life of typical stiffener transitions in the side shell is below 20 years. The fatigue lives of side shell longitudinals are regarded as normal for ships built in the period between 1980 and 1990 with extensive use of high tensile steel in the side shell. Inspection and repair proposals of details with fatigue lives below 20 years are advised accordingly. Findings of fatigue analyses provide remaining life assessment, inspection plan definition, determination of repair and modification solutions, and avoiding integrity issues resulting in production downtime and hot work or dry dock.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 417
Author(s):  
Xunqian Xu ◽  
Yuwen Gu ◽  
Wei Huang ◽  
Dakai Chen ◽  
Chen Zhang ◽  
...  

Fatigue cracks often occur in the deck asphalt pavement of steel bridges at the top of the longitudinal stiffening rib. To prevent this issue, the traditional design strategy of the steel bridge deck asphalt pavement structure was optimized, and a new approach is presented. This optimization technique exploits the strength simulation of the steel—epoxy asphalt pavement structure, and the stress concentration location is subsequently determined. A solid model of stress concentration including sensitive areas is then established. We examined the stress maximum point of the asphalt pavement layer at the top of the longitudinal stiffeners and the stress variation of the asphalt pavement layer at the top of the longitudinal stiffeners. To reduce the stress of the top pavement layer of the longitudinal stiffeners, an optimization method that combines orthogonal experimental design, neural network (BP), and genetic algorithm (GA) is presented. A design strategy for the steel—epoxy asphalt pavement structure and GA—BP optimization method was utilized to optimize the structure of the steel—epoxy asphalt pavement for Sutong Yangzi River Bridge. We confirmed that the presented approach improved fatigue reliability and established the efficacy of the design strategy and optimization method.


2021 ◽  
Vol 24 (1) ◽  
pp. 58-64
Author(s):  
Heorhii V. Filatov ◽  

This paper discusses the application of the random search method for the optimal design of single-layered reinforced cylindrical shells operating in a neutral environment. When setting a mathematical programming problem, the minimum shell weight is considered as an objective function. The critical stresses are determined according to the linear theory in the elastic region of the material. As the constraints imposed on the feasible region, the constraints on the strength, general buckling and partial buckling of a shell are accepted. The aim of this paper is to study the weight efficiency of various types of shell reinforcements and the influence of an optimum-weight shell on the parameters of an axially-compressed one. A numerical experiment was carried out. Dependencies of shell weight, wall thickness, and reinforcement parameters on the magnitude of a compressive load were investigated for shells with different types of reinforcement. As a result of the numerical experiment performed, it was found that with an increase in compressive load magnitude, there is a tendency to an increase in the wall thickness of an optimal shell, with an increase in the thickness of longitudinal stiffeners (stringers) and a slight decrease in the number of ribs. In addition, it should be noted that the general case of buckling and the first special one turned out to be decisive in choosing optimal shell parameters.


2021 ◽  
Vol 158 ◽  
pp. 107179
Author(s):  
D.M.M.P. Dissanayake ◽  
K. Poologanathan ◽  
S. Gunalan ◽  
K.D. Tsavdaridis ◽  
K.S. Wanniarachchi ◽  
...  

2021 ◽  
pp. 221-238
Author(s):  
Carolina Martins Nogueira ◽  
Vinícius Torres Pinto ◽  
Luiz Alberto Oliveira Rocha ◽  
Elizaldo Domingues dos Santos ◽  
Liércio André Isoldi

Martins Nogueira, Vinícius Torres Pinto, Luiz Alberto Oliveira Rocha, Elizaldo Domingues dos Santos and Liércio André Isoldi Right click to download the paper PDF (550K) Abstract: This study applied the Constructal Design Method (CDM) associated with the Finite Element Method (FEM) through computational models to perform a geometric analysis on rectangular stiffened plates of steel subjected to a uniform transverse loading, in order to minimize its maximum and central out-of-plane deflections. Considering a non-stiffened plate as reference and maintaining the total volume of steel constant, a portion of material volume deducted from its thickness was transformed into stiffeners through the ϕ parameter, which represents the ratio between the material volume of the stiffeners and the reference plate. Adopting ϕ = 0.30, 27 geometric arrangements of stiffened plates were established, being 9 arrangements for each 3 different stiffeners' thicknesses adopted: ts = 6.35 mm, ts = 12.70 mm and ts = 25.40 mm. For each ts value, the number of longitudinal (Nls) and transverse (Nts) stiffeners were varied from 2 to 4. Thus, in each plate arrangement configured, the influence of the ratio between the height of the transverse and longitudinal stiffeners (hts/hls) was analyzed, taking into account the values 0.50; 0.75; 1.00; 1.25; 1.50; 1.75 and 2.00, regarding to the maximum and central deflections. The results have shown that transforming a portion of steel from a non-stiffened reference plate into stiffeners can reduce the maximum and central deflections by more than 90%. Moreover, it was observed that to reduce the deflections it is more effective consider hts > hls, once the ratio hts/hls = 2.00 was the one that led to the better mechanical behavior among the analyzed cases.


2020 ◽  
Vol 64 (4) ◽  
pp. 263-272
Author(s):  
Mourad Belhadj ◽  
Noureddine Lahbari ◽  
Abdelkader Slimane ◽  
Djamel Aouiche

The aim of this work is to present a precise numerical calculus method capable to predict the behavior of a wind turbine mast, which is characterized by an open door in its lower part in order to facilitate the access to maintenance tasks. A parametric study had been conducted in this context. The structure studied of steel tower is considered a thin cylindrical shell with constant section and thickness along its studied height. The geometry of the tower had been modeled by non-linear shell type elements. Designers use interior reinforcements to avoid local buckling and minimize the disturbance of the distribution of stress in extreme conditions. The designs adopted in the models are proposed to achieve optimized results, the minimization of the mass, the maximization of the natural frequency and the rigidity at the end of the work. Many configuration had been considered in this study, the enhancement of the gap by using a panel with variable thickness value, by longitudinal stiffeners, by combined stiffeners and finally by a stiffened panel. A numerical model had been suggested to examine a cylindrical shell behavior in compression using the Abaqus software. The obtained results demonstrate the viability and performance of the proposed approach which perfectly meets the structural requirements of the wind tower. We have observed that the stiff plate model gives reliable results to stability under extreme load. On the other hand it is economically profitable is less material needed for manufacturing, which reduces the cost.


2020 ◽  
Author(s):  
Mikhail D. Kovalenko ◽  
Irina V. Menshova ◽  
Alexander P. Kerzhaev

Sign in / Sign up

Export Citation Format

Share Document