EdgeCFD-ALE: A Stabilized Finite Element System for Fluid-Structure Interaction in Offshore Engineering

Author(s):  
José L. D. Alves ◽  
Carlos E. Silva ◽  
Nestor O. Guevara ◽  
Alvaro L. G. A. Coutinho ◽  
Renato N. Elias ◽  
...  

This work presents the development of EdgeCFD-ALE, a finite element system for complex fluid-structure interactions designed for offshore hydrodynamics. Sloshing of liquids in tanks, wave breaking in ships, offshore platforms motions and green water on decks are important examples of these problems. The software uses edge-based parallel stabilized finite elements for the Navier-Stokes equations and the Volume-Of-Fluid method for the free-surface, both described by an Arbitrary Lagrangian Eulerian (ALE) formulation. Turbulence in is treated by a Smagorinsky model. Mesh updating is accomplished by a parallel edge-based solution of a non-homogeneous scalar diffusion problem in each spatial coordinate. Boundary conditions involve the motion of the immersed body’s surface, i.e., the fluid-structure interface, taken as the Lagrangian portion of the domain in the overall problem. The simulation capabilities of the present software are demonstrated in the solution of two problems, the interaction of two cylinders in tandem and the free fall of a sphere.

Author(s):  
Renato N. Elias ◽  
Milton A. Gonc¸alves ◽  
Alvaro L. G. A. Coutinho ◽  
Paulo T. T. Esperanc¸a ◽  
Marcos A. D. Martins ◽  
...  

Flows involving waves and free-surfaces occur in several problems in hydrodynamics, such as sloshing in tanks, waves breaking in ships and motions of offshore platforms. The computation of such wave problems is challenging since the water/air interface (or free-surface) commonly present merging, fragmentation and cusps, leading to the use of interface capturing Arbitrary Lagrangian-Eulerian (ALE) approaches. In such methods the interface between the two fluids is captured by the use of a marking function which is transported in a flow field. In this work we simulate these problems with a 3D incompressible SUPG/PSPG parallel edge-based finite element flow solver associated to the Volume-of-Fluid (VOF) method [1]. The hyperbolic equation for the transport of the marking function is also solved by a fully implicit parallel edge-based SUPG finite element formulation. Global mass conservation is enforced adding or removing mass proportionally to the absolute value of the normal velocity at the interface. The performance and accuracy of the proposed solution method is tested in the simulation of progressive waves and the interaction of a fixed cylinder with a progressive wave.


Author(s):  
Renato N. Elias ◽  
Milton A. Gonc¸alves ◽  
Alvaro L. G. A. Coutinho ◽  
Paulo T. T. Esperanc¸a ◽  
Marcos A. D. Martins ◽  
...  

Flows involving waves and free-surfaces occur in several problems in hydrodynamics, such as sloshing in tanks, waves breaking in ship and motions of offshore platforms. The computation of such wave problems is challenging since the water/air interface (or free-surface) commonly present merging, fragmentation and cusps, leading to the use of interface capturing Arbitrary Lagrangian-Eulerian (ALE) approaches. In such methods the interface between the two fluids is captured by the use of a marking function which is transported in a flow field. In this work we simulate these problems with a 3D incompressible SUPG/PSPG parallel edge-based finite element flow solver associated to the Volume-of-Fluid (VOF) method [1]. The hyperbolic equation for the transport of the marking function is also solved by a fully implicit parallel edge-based SUPG finite element formulation. Global mass conservation is enforced adding or removing mass proportionally to the absolute value of the normal velocity at the interface. The performance and accuracy of the proposed solution method is tested in the simulation of pulse wave and the interaction of a fixed square cylinder with a progressive wave.


Author(s):  
Renato N. Elias ◽  
Alvaro L. G. A. Coutinho ◽  
Milton A. Gonçalves ◽  
Adriano M. A. Cortês ◽  
José L. Drummond Alves ◽  
...  

Complex flows involving waves and free-surfaces occur in several problems in hydrodynamics, such as fuel or water sloshing in tanks, waves breaking in ships, offshore platforms motions, wave action on harbors and coastal areas. The computation of such highly nonlinear flows is challenging since waves and free-surfaces commonly present merging, fragmentation and cusps, leading to the use of interface capturing Arbitrary Lagrangian-Eulerian (ALE) approaches. In such methods the interface between the two fluids is captured by the use of a marking function that is transported in a flow field. In this work we simulate these problems with a 3D incompressible SUPG/PSPG parallel edge-based finite element flow solver associated to the Volume-of-Fluid (VOF) method. The hyperbolic equation for the transport of the marking function is also solved by a fully implicit parallel edge-based SUPG finite element formulation. Global mass conservation is enforced adding or removing mass proportionally to the absolute value of the normal velocity at the interface. All those techniques were successfully implemented in a computational code, which has been suitably used to carry out several studies. The performance and accuracy of the proposed solution method is tested in the simulation waves and in the interaction between waves and a semisubmersible structure. Results count on the establishment of a relaxation zone close to the domain outflow, which partially absorbs incoming waves, avoiding their reflection.


Author(s):  
Elisabeth Longatte

This work is concerned with the modelling of the interaction of a fluid with a rigid or a flexible elastic cylinder in the presence of axial or cross-flow. A partitioned procedure is involved to perform the computation of the fully-coupled fluid solid system. The fluid flow is governed by the incompressible Navier-Stokes equations and modeled by using a fractional step scheme combined with a co-located finite volume method for space discretisation. The motion of the fluid domain is accounted for by a moving mesh strategy through an Arbitrary Lagrangian-Eulerian (ALE) formulation. Solid dyncamics is modeled by a finite element method in the linear elasticity framework and a fixed point method is used for the fluid solid system computation. In the present work two examples are presented to show the method robustness and efficiency.


2011 ◽  
Vol 21 (12) ◽  
pp. 2523-2550 ◽  
Author(s):  
DANIELE BOFFI ◽  
NICOLA CAVALLINI ◽  
LUCIA GASTALDI

The Immersed Boundary Method (IBM) has been designed by Peskin for the modeling and the numerical approximation of fluid-structure interaction problems, where flexible structures are immersed in a fluid. In this approach, the Navier–Stokes equations are considered everywhere and the presence of the structure is taken into account by means of a source term which depends on the unknown position of the structure. These equations are coupled with the condition that the structure moves at the same velocity of the underlying fluid. Recently, a finite element version of the IBM has been developed, which offers interesting features for both the analysis of the problem under consideration and the robustness and flexibility of the numerical scheme. Initially, we considered structure and fluid with the same density, as it often happens when dealing with biological tissues. Here we study the case of a structure which can have a density higher than that of the fluid. The higher density of the structure is taken into account as an excess of Lagrangian mass located along the structure, and can be dealt with in a variational way in the finite element approach. The numerical procedure to compute the solution is based on a semi-implicit scheme. In fluid-structure simulations, nonimplicit schemes often produce instabilities when the density of the structure is close to that of the fluid. This is not the case for the IBM approach. In fact, we show that the scheme enjoys the same stability properties as in the case of equal densities.


Author(s):  
M. Benaouicha ◽  
S. Guillou ◽  
A. Santa Cruz ◽  
H. Trigui

The study deals with a 3D Fluid-Structure Interaction (FSI) numerical model of a rectangular cantilevered flexible hydrofoil subjected to a turbulent fluid flow regime. The structural response and dynamic deformations are studied by analyzing the oscillations frequencies and amplitudes, under a hydrodynamics loads. The obtained numerical results are confronted with experimental ones, for validation. The numerical model is performed in the same geometric, physical and material conditions as the experimental set-up carried out in a hydrodynamic tunnel. A polyacetal (POM) flexible hydrofoil NACA0015 with an angle of attack of 8° is considered to be immersed in a fluid flow at a Reynold number of 3 × 105. The structure is initially at rest and then moved by the action of the fluid flow. The numerical model is based on a strong coupling procedure for solving the Fluid-Structure Interaction problem. The Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equations is used and an anisotropic diffusion equation is solved to compute the fluid mesh velocity and position at each time step. The finite volume method is used for the numerical resolution of the fluid dynamics equations. The structure deformations are described by the linear elasticity equation which is solved by the finite elements method. The Fluid-Structure coupled problem is solved by using the partitioned FSI implicit algorithm. A good agreement between numerical and experimental results for the hydrodynamics coefficients and hydrofoil deformations, maximum deflection and frequencies is obtained. The added mass and damping are analyzed and then the FSI effect on the dynamic deformations of the structure is highlighted.


2014 ◽  
Vol 617 ◽  
pp. 66-69 ◽  
Author(s):  
Kamila Kotrasova ◽  
Ivan Grajciar ◽  
Eva Kormaníková

Ground-supported cylindrical tanks are used to store a variety of liquids. The fluid was develops a hydrodynamic pressures on walls and bottom of the tank during earthquake. This paper provides dynamic time-history response of concrete open top cylindrical liquid storage tank considering fluid-structure interaction due to earthquake. Numerical model of cylindrical tank was performed by application of the Finite Element Method (FEM) utilizing software ADINA. Arbitrary-Lagrangian-Eulerian (ALE) formulation was used for the problem analysis. Two way Fluid-Structure Interaction (FSI) techniques were used for the simulation of the interaction between the structure and the fluid at the common boundary


Author(s):  
Yogesh Ramesh Patel

This paper provides a brief overview of the research in the field of Fluid-structure interaction in Wind Turbines. Fluid-Structure Interaction (FSI) is the interplay of some movable or deformable structure with an internal or surrounding fluid flow. Flow brought about vibrations of two airfoils used in wind turbine blades are investigated by using a strong coupled fluid shape interplay approach. The approach is based totally on a regularly occurring Computational Fluid Dynamics (CFD) code that solves the Navier-Stokes equations defined in Arbitrary Lagrangian-Eulerian (ALE) coordinates by way of a finite extent method. The need for the FSI in the wind Turbine system is studied and comprehensively presented.


Sign in / Sign up

Export Citation Format

Share Document