scholarly journals An Analytical Model of Floating Offshore Wind Turbine Blades Considering Bending-Torsion Coupling Effect

Author(s):  
Xiaoqi Qu ◽  
Yougang Tang ◽  
Zhen Gao ◽  
Yan Li ◽  
Liqin Liu

In this paper, an analytical model is proposed to describe the nonlinear vibration of blades on floating offshore wind turbine (FOWT). The bending-torsion coupling equations are derived based on Hamilton’s principle. Comparing with the classical Newtonian method, this approach is more mathematically rigorous and systematic. The flapwise and edgewise deformation, the torsion as well as axial extension of the blades are all included in the model. A set of partial differential equations governing the coupled nonlinear vibration is established, and the results are compared with the multi-body model. Some details about the solution of equations are discussed. The eigen values of a rotating blade is also calculated. The structural model proposed in this paper can be widely used in the future study. For example, it can be coupled with an aerodynamic model to study the aeroelastic properties of the wind turbine blades. The effect of platform motion on blade dynamic response can also be obtained based on this analytical model.

2021 ◽  
Vol 35 (4) ◽  
pp. 544-553
Author(s):  
Yan-fei Chen ◽  
Zhi-peng Zang ◽  
Shao-hua Dong ◽  
Chuan Ao ◽  
Hao Liu ◽  
...  

2015 ◽  
Vol 39 (4) ◽  
pp. 419-436 ◽  
Author(s):  
Phillip W. Richards ◽  
D. Todd Griffth ◽  
Dewey H. Hodges

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
M. Tarfaoui ◽  
O. R. Shah ◽  
M. Nachtane

In order to obtain an optimal design of composite offshore wind turbine blade, take into account all the structural properties and the limiting conditions applied as close as possible to real cases. This work is divided into two stages: the aerodynamic design and the structural design. The optimal blade structural configuration was determined through a parametric study by using a finite element method. The skin thickness, thickness and width of the spar flange, and thickness, location, and length of the front and rear spar web were varied until design criteria were satisfied. The purpose of this article is to provide the designer with all the tools required to model and optimize the blades. The aerodynamic performance has been covered in this study using blade element momentum (BEM) method to calculate the loads applied to the turbine blade during service and extreme stormy conditions, and the finite element analysis was performed by using abaqus code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear finite element analysis using mean values for the material properties and the failure criteria of Hashin to predict failure modes in large structures and to identify the sensitive zones.


2019 ◽  
Vol 27 (8) ◽  
pp. 443-475 ◽  
Author(s):  
Arash Dashtkar ◽  
Homayoun Hadavinia ◽  
M Necip Sahinkaya ◽  
Neil A Williams ◽  
Samireh Vahid ◽  
...  

Wind blades are the most expensive parts of wind turbines made from fibre-reinforced polymer composites. The blades play a critical role on the energy production, but they are prone to damage like any other composite components. Leading edge (LE) erosion of the wind turbine blades is one of the common damages, causing a reduction in the annual energy production especially in offshore wind turbine farms. This erosion can be caused by rain, sand and flying solid particles. Coating the blade against erosion using appropriate materials can drastically reduce these losses and hence is of great interest. The sol–gel technique is a convenient method to manufacture thin film coatings, which can protect the blades against the rain erosion, while having negligible effect on the weight of the blades. This article provides an extensive review of the liquid erosion mechanism, water erosion testing procedures and the contributing factors to the erosion of the LE of wind turbine blades. Techniques for improving the erosion resistance of the LE using carbon nanotubes and graphene nano-additives are also discussed.


Sign in / Sign up

Export Citation Format

Share Document