FEM Stress Analysis and Sealing Performance in Pipe Flange Connections With Gaskets Subjected to Internal Pressure and External Bending Moment

Author(s):  
Toshiyuki Sawa ◽  
Mitsuhiro Matsumoto

This paper deals with the characteristics of a pipe flange connection with a compressed asbestos sheet gasket (JIS) subjected to an internal pressure and a bending moment. The contact gasket stress distributions at the interfaces between pipe flanges and a gasket are calculated by the elasto-plastic finite element method taking account a hysteresis and a non-linearity in the stress-strain curve of the compressed asbestos sheet gasket. In addition, measurements of a change in axial bolt force and leakage test were conducted using an actual pipe flange connection with the gasket subjected to the internal pressure and the bending moment. The new gasket constants are calculated by using the results of the leakage test and the calculated average contact gasket stress. The values of the new gasket constants obtained by the present study are in a fairly good agreement with those from ROTT (PVRC). It is found that the value of the tightness parameter is increased as the bending moment is increased. This is because the average contact gasket stress under the bending moment is increased, while it is decreased under the internal pressure.

Author(s):  
Masahide Katsuo ◽  
Toshiyuki Sawa ◽  
Yuki Kikuchi

This study deals with the stress analysis and the estimation of sealing performance of the pipe flange connections with an adhesive under an internal pressure and an external bending moment are analyzed by using the 3-dimensional elastic finite element method (FEM). The experiment of the leakage test of the connections with an adhesive was carried out by applying the above loads to the connections. From the FEM analysis, the following results were obtained; (1) when an internal pressure is applied to the flange connections, the compressive stress at the interface between a flange and an adhesive increases proportionally from the inner side of the interface to outside, and (2) when an internal pressure and a bending moment apply to the flange connections, the stress distribution at the half part of the interface increases as the external bending moments increase and also Young’s modulus of the adhesive increases. From the experiments, the following results were obtained: (1) sealing performance of the pipe flange connections with an adhesive under an internal pressure and an external bending moment increases as the flange thickness and an initial clamping force of bolts increases and (2) the sealing performances were not found between the connections with an adhesive and that with a gasket combining an adhesive. Furthermore, the numerical results are in fairly good agreement with the experimental results.


Author(s):  
Ryou Kurosawa ◽  
Kentaro Tenma ◽  
Toshiyuki Sawa

The oil pan wavy-shaped flange connection, while is a type of the box-shaped flange connections, has been used for the oil-pan in the vehicles such as cars and motorcycles to seal inner fluid. Though the light weight of these connections is important, the design method has not been established, since no research for evaluating the sealing performance of the wavy-shaped flange connections has been conducted. In this paper, The contact gasket stress distribution in a oil pan wavy-shaped flange connection under the internal pressure is examined taking into account a gasket hysteresis using finite element method (FEM) for estimating a location where a principal leakage occurs and for calculating the amount of leakage. Leakage tests were also conducted to validate the estimated results using an actual connection under internal pressure. The effects of flange shape and difference in types of inner fluid (gas / liquid) are examined on the contact gasket stress distributions and the sealing performance in the connections. It is found that the estimated amount of leakage is in a fairly good agreement with the measured results. Furthermore, discussion on the effect of the bolt spacing and the gasket width on the sealing performance are made.


Author(s):  
Toshiyuki Sawa ◽  
Yoshio Takagi ◽  
Koji Sato ◽  
Yuya Omiya ◽  
Hayato Doi

Bolted pipe flange connections have been widely used in mechanical structures such as oil, chemical plants and so on. Sometimes leakage accidents occur from the connections. In assembling the pipe flange connections, the bolt preloads are scattered and then the connections are subjected to external bending moment due to earthquake as well as internal pressure. In the present paper, the changes in the axial bolt forces are measured in assembling. The bolts are tightened with torque wrench. Using the history of the bolt force changes, the gasket stress distributions on the connection with gaskets are analyzed using FEM. Then the gasket stress distributions on the connections under external bending moment and internal pressure are analyzed. Using the gasket stress distributions, the amount of leakage of the connections is estimated while the basic gasket characteristics have been measured according to JIS B 2251. The amount of leakage of the connection was measured for the various gasket stresses. The estimated results are in a fairly good agreement with the measured results. It is found that the effect of the scatter of bolt preload is substantial on the sealing performance of the connections. Discussion is made on the sealing characteristics of the connections. The change of axial bolt force obtained from experimental result and FEM result are fairly good agreement.


Author(s):  
Ryou Kurosawa ◽  
Toshiyuki Sawa ◽  
Yuya Omiya ◽  
Takashi Kobayashi ◽  
Kentaro Temma

The bolted connections inserting gasket such as circular flange connections have been widely used in mechanical structures, which is nuclear and chemical industry, and so on. They are usually used under internal pressure. And they are required the high sealing performance. In the circular flange with non-asbestos compressed sheet gaskets, the two flange surfaces, raised-face and flat-face, are used. The raised-face flange on the sealing performance is examined by many researchers and reported. The flat-face is well known that flange rotation is smaller than that in raised-face flange under the internal pressure. However the sealing performance of the flat-face flange connection isn’t examined. Thus, the sealing performance of the flat-face flange connection is not examined. In this paper, the contact gasket stresses of these connections under internal pressure are analyzed using the finite element method (FEM) of each flange surfaces, taking into account a hysteresis in the stress-displacement curve of the gasket. And then, using the contact gasket stress distributions obtained from FE analysis and the relationship between gasket stress and leak rate obtained from a gasket sealing test (JIS B2490), method for estimating an amount of leakage is examined. The leakage tests were also conducted to measure an amount of gas leakage using an actual circular flange connection with a gasket. The estimated results are in a fairly good agreement with the experimental results.


Author(s):  
Toshiyuki Sawa ◽  
Mitsuhiro Matsumoto ◽  
Satoshi Nagata

It has been well known that a scatter in axial bolt forces of pipe flange connections tightened by the torque control method is substantial. It is necessary for evaluating the sealing performance of the pipe flange connections with the gaskets subjected to intemal pressure to know the contact gasket stress distributions due to the scatter of the axial bolt forces in the connections tightened by the torque control method. This paper deals with the leakage of the pipe flange connections with a spiral wound gasket and that with a compressed sheet gasket tightened by the torque control method. The scatter in the axial bolt forces was measured in the experiments. The contact gasket stress distributions at the interfaces of the pipe flange connections with the gaskets were calculated under the measured axial bolt forces by using elasto-plastic finite element method (FEM) taking into account hysteresis and non-linearity in the stress-strain curves of the gaskets. The effects of the scatter in the axial bolt forces tightened by the torque control method on the gas leakage were also examined by using the actual pipe flange connections. As the result, a difference in an amount of gas leakage measured was found to be substantial between our study and PVRC procedure. By using the calculated contact gasket stress distributions under the internal pressure and the results of the leakage tests, the sealing performance was evaluated. It is found that the sealing performance is worse in the actual pipe flange connection than that evaluated by PVRC procedure.


Author(s):  
Yoshio Takagi ◽  
Hiroyasu Torii ◽  
Toshiyuki Sawa ◽  
Kensuke Funada

The sealing performance of pipe flange connection subjected to an external bending moment was evaluated with the FEM and the experiments. The experimental leakage test using water revealed that the bending moment had an important effect on the sealing performance. The FE analyses suggested that the contact gasket stress, which was a function of the bolt preload, determines the leakage. The changes in contact gasket stress at tension side and compression side when the external bending moment applied were not symmetrical. The reduction in the contact gasket stress of tension side was larger than that of compression side due to the non-linear stress-strain behavior of the gasket. In addition, the hub stress of the flange when external bending moment applied, was evaluated from FE result and the discussion for optimizing the flange design subjected to external bending moment was done in this paper.


Author(s):  
Toshiyuki Sawa ◽  
Wataru Maezaki ◽  
Satoshi Nagata

It has been well known that a scatter in axial bolt forces of pipe flange connections tightened by the torque control method is substantial. It is necessary for evaluating the sealing performance of the pipe flange connections with the gaskets subjected to internal pressure and external bending moment to know the contact gasket stress distributions due to the scatter of the axial bolt forces in the connections tightened by the torque control method. This paper deals with the leakage of the pipe flange connections with a spiral wound gasket subjected to internal pressure and external bending moment tightened by the torque control method. The scattered axial bolt forces were measured in the experiments. The contact gasket stress distributions at the interfaces between pipe flanges and the gasket were calculated under the measured axial bolt force by using elasto-plastic finite element method (FEM) taking into account hysteresis and non-linearity in the stress-strain curves of spiral wound gasket. The effects of the scatter in the axial bolt forces tightened by the torque control method on the gas leakage were also examined by using the actual pipe flange connections under internal pressure and external bending moment. By using the calculated contact stress distributions and the results of the leakage tests, the sealing performance was evaluated. It is found that the sealing performance is worse in the actual pipe flange connection than that evaluated by PVRC procedure.


Author(s):  
Koji Sato ◽  
Toshiyuki Sawa ◽  
Riichi Morimoto ◽  
Takashi Kobayashi

In designing of pipe flange connections with gaskets, it is important to examine the mechanical characteristics of the connections subjected to external bending moments due to earthquake such as the changes in hub stress, axial bolt forces and the contact gasket stress distribution which governs the sealing performance. One of the authors developed the PTFE blended gaskets and the authors examined the mechanical characteristics of the connections with the PTFE blended gaskets under internal pressure. However, no research was done to examine the mechanical characteristics of the connections with the newly developed PTFE blended gasket subjected to external bending moment due to earthquake. The objectives of the present study are to examine the mechanical characteristics of the connection with PTFE blended gasket subjected to external bending moment and internal pressure and to discuss the difference in the load order to the connections between the internal pressure and the external bending moments. The changes in the hub stress, the axial bolt force and the contact gasket stress distribution of the connection are analyzed using FEM. Using the obtained the gasket stress distribution and the fundamental data between the gasket stress and the leak rate for a smaller test gasket, the leak rate of the connection with the gasket is predicted under external bending moment and internal pressure. In the FEM calculations, the effects of the nominal diameter of pipe flanges on the mechanical characteristics are shown. In the experiments, ASME class 300 4 inch flange connection with 2m pipes at both sides is used and the test gasket is chosen as No.GF300 made by Nippon Valqua Industries, ltd. Four point bending moment is applied to the connection. The FEM results of the hub stress and the axial bolt forces are in a fairly good agreement with the experimental results. In addition, the FEM results of the leak rate are fairly coincided with the measured results.


Author(s):  
Koji Kondo ◽  
Shota Tsubaki ◽  
Toshiyuki Sawa ◽  
Tsutomu Kikuchi ◽  
Yuya Omiya

Bolted flange connections with ring joint gaskets have been used to seal the inner fluid under higher internal pressure and higher temperature conditions where soft gaskets such as compressed sheet gaskets cannot be applied. Bolted flange connections are frequently tightened using torque wrench, and it is known that the values of bolt preloads are scattered. The effect of the scatter on the sealing performance for bolted flange connections with compressed sheet gasket or semi-metal gasket has been examined. However, no research on the characteristics for the bolted flange connections with ring joint gasket has been found. It is necessary to know the effect of the scattered bolt preloads on the sealing performance and mechanical behavior of the connection with ring joint gasket. In addition, it is important to know an optimum method for determining the bolt preloads taking account of the scatter in bolt preloads. In this paper, leakage tests for bolted flange connections with octagonal ring joint gaskets were conducted for cases where the bolt preloads are uniform and scattered. The sealing performance of these connections with ring joint gaskets was measured and evaluated. In addition, the leak rate was estimated using the contact gasket stress distributions of the connections when the bolt preloads were uniform and scattered using 3-D FEM. Finally, the measured leak rate for the connection using helium gas was compared with the estimated results. The estimated results are in fairly good agreement with the measured values. It is found that the sealing performance of the connections tightened with the uniform bolt methods is better than that with scattered bolt preloads.


Author(s):  
Yoshio Takagi ◽  
Hiroyasu Torii ◽  
Toshiyuki Sawa ◽  
Yuya Omiya

Since an external bending moment affects the sealing performance of pipe flange connection, it is important to investigate this effect. This paper analyzed the contact gasket stress distribution of pipe flange connections and evaluates the effect of external bending moment on the sealing performance from the viewpoint of changes in contact gasket stress. The study includes the FE analyses and the experimental leakage tests. The FE analyses suggested the large decrease of contact gasket stress at tension side and small increase at compression side. The difference in change in contact gasket stress was caused by the non-linear hysteresis characteristics of stress-displacement curve of gasket. The FE analyses also suggested that the loading order, internal pressure and external bending moment, also affected the sealing performance due to the non-linear deformation characteristic of the gasket. The sealing performance when the external bending moment applied prior to the internal pressure was degraded more than when the internal pressure was applied prior to the external bending moment. The experimental leakage tests using helium (He) gas were analyzed by the finite element method and discussed. This paper also evaluated the stress distribution in the pipe flange under external bending moment. The results suggested that the hub stress dominated the flange structure and the most important factor in designing the flange.


Sign in / Sign up

Export Citation Format

Share Document