Numerical Investigations of a Turbulence Mixing Process Related to Thermal Striping Phenomena at a T-Junction of Liquid Metal Fast Reactor Piping Systems
Fluid-structure thermal interaction phenomena characterized by stationary random temperature fluctuations, namely thermal striping are observed in the downstream region of a T-junction piping system of liquid metal fast reactor (LMFR). Therefore the piping walls located in the downstream region must be protected against the stationary random thermal process which might induced high-cycle fatigue. This paper describes the evaluation system based on numerical simulation methods for the thermal striping, and numerical results of the thermal striping at a T-junction piping system under the various parameters, i.e., velocity ratio and diameter ratio between both the pipes and Reynolds number. Then detailed turbulence mixing process at the T-junction piping region due to arched vortexes generating lower frequency fluctuations are evaluated through a separate numerical analysis of a fundamental water experiment.