Vibration Control of Structures by Using Multi-Degree-of-Freedom Dynamic Absorber

Author(s):  
Daisuke Iba ◽  
Akira Sone ◽  
Arata Masuda

This paper proposes a multi-degree-of-freedom dynamic absorber, which has multiple auxiliary masses and can suppress multiple vibration modes of structures passively during earthquake. The designable parameters of the dynamic absorber are determined by utilizing a theory of H∞ static output feedback control and by solving a Bilinear-Matrix-Inequality (BMI) problem. Finally, numerical simulations for the two-degree-of-freedom dynamic absorber show the advantages of the proposed method compared with the conventional single-degree-of-freedom dynamic absorber.

1959 ◽  
Vol 26 (3) ◽  
pp. 377-385
Author(s):  
R. M. Rosenberg ◽  
C. P. Atkinson

Abstract The natural modes of free vibrations of a symmetrical two-degree-of-freedom system are analyzed theoretically and experimentally. This system has two natural modes, one in-phase and the other out-of-phase. In contradistinction to the comparable single-degree-of-freedom system where the free vibrations are always orbitally stable, the natural modes of the symmetrical two-degree-of-freedom system are frequently unstable. The stability properties depend on two parameters and are easily deduced from a stability chart. For sufficiently small amplitudes both modes are, in general, stable. When the coupling spring is linear, both modes are always stable at all amplitudes. For other conditions, either mode may become unstable at certain amplitudes. In particular, if there is a single value of frequency and amplitude at which the system can vibrate in either mode, the out-of-phase mode experiences a change of stability. The experimental investigation has generally confirmed the theoretical predictions.


1992 ◽  
Vol 59 (4) ◽  
pp. 711-721 ◽  
Author(s):  
J.-Y. Lee ◽  
P. S. Symonds ◽  
G. Borino

The paper discusses chaotic response behavior of a beam model whose ends are fixed, so that shallow arch action prevails after moderate plastic straining has occurred due to a short pulse of transverse loading. Examples of anomalous displacement-time histories of a uniform beam are first shown. These motivated the present study of a two-degree-of-freedom model of Shanley type. Calculations confirm these behaviors as symptoms of chaotic unpredictability. Evidence of chaos is seen in displacement-time histories, in phase plane and power spectral diagrams, and especially in extreme sensitivity to parameters. The exponential nature of the latter is confirmed by calculations of conventional Lyapunov exponents and also by a direct method. The two-degree-of-freedom model allows use of the energy approach found helpful for the single-degree-of-freedom model (Borino et al., 1989). The strain energy is plotted as a surface over the displacement coordinate plane, which depends on the plastic strains. Contrasting with the single-degree-of-freedom case, the energy diagram illuminates the possibility of chaotic vibrations in an initial phase, and the eventual transition to a smaller amplitude nonchaotic vibration which is finally damped out. Properties of the response are further illustrated by samples of solution trajectories in a fixed total energy plane and by related Poincare section plots.


2005 ◽  
Vol 127 (2) ◽  
pp. 249-256 ◽  
Author(s):  
David E. Foster ◽  
Gordon R. Pennock

This paper presents graphical techniques to locate the unknown instantaneous centers of zero velocity of planar, single-degree-of-freedom, linkages with kinematic indeterminacy. The approach is to convert a single-degree-of-freedom indeterminate linkage into a two-degree-of-freedom linkage. Two methods are presented to perform this conversion. The first method is to remove a binary link and the second method is to replace a single link with a pair of links connected by a revolute joint. First, the paper shows that a secondary instant center of a two-degree-of-freedom linkage must lie on a unique straight line. Then this property is used to locate a secondary instant center of the single-degree-of-freedom indeterminate linkage at the intersection of two lines. The two lines are obtained from a purely graphical procedure. The graphical techniques presented in this paper are illustrated by three examples of single-degree-of-freedom linkages with kinematic indeterminacy. The examples are a ten-bar linkage with only revolute joints, the single flier eight-bar linkage, and a ten-bar linkage with revolute and prismatic joints.


Author(s):  
David E. Foster ◽  
Gordon R. Pennock

This paper presents graphical techniques to locate the unknown instantaneous centers of zero velocity of planar, single-degree-of-freedom, linkages with kinematic indeterminacy. The approach is to convert a single-degree-of-freedom indeterminate linkage into a two-degree-of-freedom linkage. Two methods are presented to perform this conversion. The first method is to remove a binary link and the second method is to replace a single link with a pair of links connected by a revolute joint. First, the paper shows that a secondary instantaneous center of a two-degree-of-freedom linkage must lie on a unique straight line. Then this property is used to locate a secondary instant center of the single-degree-of-freedom linkage at the intersection of two lines. The two lines are obtained from a purely graphical procedure. The graphical techniques presented in this paper are illustrated by three examples of single-degree-of-freedom linkages with kinematic indeterminacy. The examples are a ten-bar linkage with only revolute joints, the single flier eight-bar linkage, and a ten-bar linkage with revolute and prismatic joints.


Sign in / Sign up

Export Citation Format

Share Document