Graphical Methods to Locate the Secondary Instant Centers of Single-Degree-of-Freedom Indeterminate Linkages

Author(s):  
David E. Foster ◽  
Gordon R. Pennock

This paper presents graphical techniques to locate the unknown instantaneous centers of zero velocity of planar, single-degree-of-freedom, linkages with kinematic indeterminacy. The approach is to convert a single-degree-of-freedom indeterminate linkage into a two-degree-of-freedom linkage. Two methods are presented to perform this conversion. The first method is to remove a binary link and the second method is to replace a single link with a pair of links connected by a revolute joint. First, the paper shows that a secondary instantaneous center of a two-degree-of-freedom linkage must lie on a unique straight line. Then this property is used to locate a secondary instant center of the single-degree-of-freedom linkage at the intersection of two lines. The two lines are obtained from a purely graphical procedure. The graphical techniques presented in this paper are illustrated by three examples of single-degree-of-freedom linkages with kinematic indeterminacy. The examples are a ten-bar linkage with only revolute joints, the single flier eight-bar linkage, and a ten-bar linkage with revolute and prismatic joints.

2005 ◽  
Vol 127 (2) ◽  
pp. 249-256 ◽  
Author(s):  
David E. Foster ◽  
Gordon R. Pennock

This paper presents graphical techniques to locate the unknown instantaneous centers of zero velocity of planar, single-degree-of-freedom, linkages with kinematic indeterminacy. The approach is to convert a single-degree-of-freedom indeterminate linkage into a two-degree-of-freedom linkage. Two methods are presented to perform this conversion. The first method is to remove a binary link and the second method is to replace a single link with a pair of links connected by a revolute joint. First, the paper shows that a secondary instant center of a two-degree-of-freedom linkage must lie on a unique straight line. Then this property is used to locate a secondary instant center of the single-degree-of-freedom indeterminate linkage at the intersection of two lines. The two lines are obtained from a purely graphical procedure. The graphical techniques presented in this paper are illustrated by three examples of single-degree-of-freedom linkages with kinematic indeterminacy. The examples are a ten-bar linkage with only revolute joints, the single flier eight-bar linkage, and a ten-bar linkage with revolute and prismatic joints.


2016 ◽  
Vol 8 (5) ◽  
Author(s):  
Saleh M. Almestiri ◽  
Andrew P. Murray ◽  
David H. Myszka ◽  
Charles W. Wampler

This paper extends the general method to construct a singularity trace for single degree-of-freedom (DOF), closed-loop linkages to include prismatic along with revolute joints. The singularity trace has been introduced in the literature as a plot that reveals the gross motion characteristics of a linkage relative to a designated input joint and a design parameter. The motion characteristics identified on the plot include a number of possible geometric inversions (GIs), circuits, and singularities at any given value for the input link and the design parameter. An inverted slider–crank and an Assur IV/3 linkage are utilized to illustrate the adaptation of the general method to include prismatic joints.


2016 ◽  
Vol 8 (3) ◽  
Author(s):  
Hailin Huang ◽  
Bing Li ◽  
Jianyang Zhu ◽  
Xiaozhi Qi

This paper proposes a new family of single degree of freedom (DOF) deployable mechanisms derived from the threefold-symmetric deployable Bricard mechanism. The mobility and geometry of original threefold-symmetric deployable Bricard mechanism is first described, from the mobility characterstic of this mechanism, we show that three alternate revolute joints can be replaced by a class of single DOF deployable mechanisms without changing the single mobility characteristic of the resultant mechanisms, therefore leading to a new family of Bricard-derived deployable mechanisms. The computer-aided design (CAD) models are used to demonstrate these derived novel mechanisms. All these mechanisms can be used as the basic modules for constructing large volume deployable mechanisms.


1959 ◽  
Vol 26 (3) ◽  
pp. 377-385
Author(s):  
R. M. Rosenberg ◽  
C. P. Atkinson

Abstract The natural modes of free vibrations of a symmetrical two-degree-of-freedom system are analyzed theoretically and experimentally. This system has two natural modes, one in-phase and the other out-of-phase. In contradistinction to the comparable single-degree-of-freedom system where the free vibrations are always orbitally stable, the natural modes of the symmetrical two-degree-of-freedom system are frequently unstable. The stability properties depend on two parameters and are easily deduced from a stability chart. For sufficiently small amplitudes both modes are, in general, stable. When the coupling spring is linear, both modes are always stable at all amplitudes. For other conditions, either mode may become unstable at certain amplitudes. In particular, if there is a single value of frequency and amplitude at which the system can vibrate in either mode, the out-of-phase mode experiences a change of stability. The experimental investigation has generally confirmed the theoretical predictions.


Author(s):  
Huang Hailin ◽  
Li Bing

In this paper, we present the concept of designing flapping wing air vehicle by using the deployable mechanisms. A novel deployable 6R mechanism, with the deploying/folding motion of which similar to the flapping motion of the vehicle, is first designed by adding two revolute joints in the adjacent two links of the deployable Bennett linkage. The mobility of this mechanism is analyzed based on a coplanar 2-twist screw system. An intuitive projective approach for the geometric design of the 6R deployable mechanism is proposed by projecting the joint axes on the deployed plane. Then the geometric parameters of the deployable mechanism can be determined. By using another 4R deployable Bennett connector, the two 6R deployable wing mechanisms can be connected together such that the whole flapping wing mechanism has a single degree of freedom (DOF).


Author(s):  
Robert J. Lang ◽  
Spencer Magleby ◽  
Larry Howell

We present the design for a family of deployable structures based on the origami flasher that are rigidly foldable, i.e., foldable with revolute joints at the hinges and planar rigid faces, and that exhibit a single degree of freedom in their motion. These structures may be used to realize highly compact deployable mechanisms.


1992 ◽  
Vol 59 (4) ◽  
pp. 711-721 ◽  
Author(s):  
J.-Y. Lee ◽  
P. S. Symonds ◽  
G. Borino

The paper discusses chaotic response behavior of a beam model whose ends are fixed, so that shallow arch action prevails after moderate plastic straining has occurred due to a short pulse of transverse loading. Examples of anomalous displacement-time histories of a uniform beam are first shown. These motivated the present study of a two-degree-of-freedom model of Shanley type. Calculations confirm these behaviors as symptoms of chaotic unpredictability. Evidence of chaos is seen in displacement-time histories, in phase plane and power spectral diagrams, and especially in extreme sensitivity to parameters. The exponential nature of the latter is confirmed by calculations of conventional Lyapunov exponents and also by a direct method. The two-degree-of-freedom model allows use of the energy approach found helpful for the single-degree-of-freedom model (Borino et al., 1989). The strain energy is plotted as a surface over the displacement coordinate plane, which depends on the plastic strains. Contrasting with the single-degree-of-freedom case, the energy diagram illuminates the possibility of chaotic vibrations in an initial phase, and the eventual transition to a smaller amplitude nonchaotic vibration which is finally damped out. Properties of the response are further illustrated by samples of solution trajectories in a fixed total energy plane and by related Poincare section plots.


2016 ◽  
Vol 8 (3) ◽  
Author(s):  
Robert J. Lang ◽  
Spencer Magleby ◽  
Larry Howell

We present the design for a family of deployable structures based on the origami flasher, which are rigidly foldable, i.e., foldable with revolute joints at the creases and planar rigid faces. By appropriate choice of sector angles and introduction of a cut, a single degree-of-freedom (DOF) mechanism is obtained. These structures may be used to realize highly compact deployable mechanisms.


Sign in / Sign up

Export Citation Format

Share Document