Fluid Pressure on Rectangular Rigid Tanks Due to Uplift Motion

Author(s):  
Tomoyo Taniguchi ◽  
Yoshinori Ando

This paper mathematically derives fluid pressure on a rectangular rigid tank with unit depth, which models a section of a center part of a flat-bottom cylindrical shell tank, accompanied with uplift motion. Employing boundary conditions consisting of fluid velocity imparted by motion of the side walls and bottom plate of the tank along with uplifting, the equation of continuity of fluid given by the Laplace equation is solved as the parabolic partial differential equation of Neumann problem. The fluid pressure is given by a function of the velocity potential. Comparison of mathematical results with numerical ones based on explicit FE analysis corroborates its accuracy and applicability on design procedure of flat-bottom cylindrical shell tanks.

Author(s):  
Tomoyo Taniguchi ◽  
Toru Segawa

Although the uplift motion of flat bottom cylindrical shell tanks has been considered to contribute toward various damage to tanks, the mechanics were not fully understood. As well as computing uplift displacement of the tanks, accurate prediction of fluid pressure accompanied with uplift motion is indispensable to prevent the tanks from severe damage. This paper mathematically derives the fluid pressure on a rectangular tank with unit depth consisting of rigid walls and rectilinearly deforming bottom plate accompanied with the uplift motion. Assuming perfect fluid and velocity potential, the continuity equation is given by Laplace equation. The fluid velocity imparted by motion of rigid walls, immobile bottom plate and rectilinearly deformed bottom plate of tank accompanied with uplift of the tank constitutes boundary conditions. Since this problem is set as the parabolic partial differential equation of Neumann problem, the velocity potential is solved with Fourier-cosine expansion. Derivatives of the velocity potential with respect to time give the fluid pressure at arbitrary point inside the tank. The proposed mathematical solution well converges with a first few terms of Fourier series. Diagrams that depict the fluid pressure normalized by product of angular acceleration and diagonals of the tank are presented.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Tomoyo Taniguchi ◽  
Yoshinori Ando

To protect flat-bottom cylindrical tanks against severe damage from uplift motion, accurate evaluation of accompanying fluid pressures is indispensable. This paper presents a mathematical solution for evaluating the fluid pressure on a rigid flat-bottom cylindrical tank in the same manner as the procedure outlined and discussed previously by the authors (Taniguchi, T., and Ando, Y., 2010, “Fluid Pressures on Unanchored Rigid Rectangular Tanks Under Action of Uplifting Acceleration,” ASME J. Pressure Vessel Technol., 132(1), p. 011801). With perfect fluid and velocity potential assumed, the Laplace equation in cylindrical coordinates gives a continuity equation, while fluid velocity imparted by the displacement (and its time derivatives) of the shell and bottom plate of the tank defines boundary conditions. The velocity potential is solved with the Fourier–Bessel expansion, and its derivative, with respect to time, gives the fluid pressure at an arbitrary point inside the tank. In practice, designers have to calculate the fluid pressure on the tank whose perimeter of the bottom plate lifts off the ground like a crescent in plan view. However, the asymmetric boundary condition given by the fluid velocity imparted by the deformation of the crescent-like uplift region at the bottom cannot be expressed properly in cylindrical coordinates. This paper examines applicability of a slice model, which is a rigid rectangular tank with a unit depth vertically sliced out of a rigid flat-bottom cylindrical tank with a certain deviation from (in parallel to) the center line of the tank. A mathematical solution for evaluating the fluid pressure on a rigid flat-bottom cylindrical tank accompanying the angular acceleration acting on the pivoting bottom edge of the tank is given by an explicit function of a dimensional variable of the tank, but with Fourier series. It well converges with a few first terms of the Fourier series and accurately calculates the values of the fluid pressure on the tank. In addition, the slice model approximates well the values of the fluid pressure on the shell of a rigid flat-bottom cylindrical tank for any points deviated from the center line. For the designers’ convenience, diagrams that depict the fluid pressures normalized by the maximum tangential acceleration given by the product of the angular acceleration and diagonals of the tank are also presented. The proposed mathematical and graphical methods are cost effective and aid in the design of the flat-bottom cylindrical tanks that allow the uplifting of the bottom plate.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Tomoyo Taniguchi ◽  
Yoshinori Ando

Although uplift motion of flat-bottom cylindrical shell tanks has been considered to contribute toward various damages to the tanks, the mechanics were not fully understood. As well as uplift displacement of the tanks, fluid pressure accompanying the uplift motion of the tanks may play an important role in the cause of the damage. An accurate estimate of the fluid pressure induced by the uplift motion of the tanks is indispensable in protecting the tanks against destructive earthquakes. As a first step of a series of research, this study mathematically derives the fluid pressure on a rigid rectangular tank with a unit depth accompanying angular acceleration, which acts on a pivoting bottom edge. The rectangular tank employed herein is equivalent to a thin slice of the central vertical cross section of a rigid flat-bottom cylindrical shell tank. Assuming a perfect fluid and velocity potential, a continuity equation is given by the Laplace equation in Cartesian coordinates. The fluid velocities accompanying the motions of the walls and bottom plate constitute the boundary conditions. Since this problem is set as a parabolic partial differential equation of the Neumann problem, the velocity potential is solved with the Fourier-cosine expansion. The derivative of the velocity potential with respect to time gives the fluid pressure at an arbitrary point inside the tank. A mathematical solution for evaluating the fluid pressure accompanying the angular acceleration acting on the pivoting bottom edge of the tank is given by an explicit function of a dimensional variable of the tank, but with the Fourier series. The proposed mathematical solution well converges with a few first terms of the Fourier series. Values of the fluid pressure computed by the explicit finite element (FE) analysis well agrees with those by the proposed mathematical solution. For the designers’ convenience, diagrams that depict the fluid pressures normalized by the maximum tangential acceleration given by the product of the angular acceleration and diagonals of the tank are also presented. Consequently, the mathematical solution given by the Fourier series converges easily and provides accurate evaluation of the fluid pressures on a rigid rectangular tank accompanying the angular acceleration acting on the pivoting bottom edge. Irregularity in the fluid pressure distribution increases as the tank becomes taller.


Author(s):  
Tomoyo Taniguchi ◽  
Yoshinori Ando

Solving the equation of continuity given by the Laplace equation on the cylindrical coordinates, the mathematical solution for evaluating fluid pressure on rigid flat-bottom cylindrical shell tanks is derived. However, since difficulty of applying asymmetric boundary conditions on the cylindrical coordinates which trace realistic uplift motion of tanks restricts application of the preceding mathematical solution to the actual case scenario, the slice model consisting of a rigid rectangular tank with unit depth on a parallel plane to the uplift motion and offsetting from a center of tanks is developed. Comparison reveals applicability of the slice model for evaluating the fluid pressure on the rigid flat-bottom cylindrical rigid shell tanks.


Author(s):  
Tomoyo Taniguchi ◽  
Takumi Shirasaki

Flat-bottom cylindrical shell tanks may rock and have a crescent-like uplift part in the bottom plate at the event of a severe earthquake. Effects of the deformed tank bottom plate on the fluid pressure on the cylindrical tank have not been, however, quantified yet. Since the crescent-like uplift part appears eccentrically on the periphery of the tank bottom plate, its mathematical treatment would be troublesome. Regarding a cylindrical tank as a set of pieces of a thin rectangular tank with a deformed bottom plate that correspond radially sliced parts of the cylindrical tank with the crescent-like uplift part in the bottom plate, this paper defines the fluid pressure on the cylindrical tank by calculating that on the rectangular tank. For designer’s convenience, the fluid pressure computed are normalized and depicted in accordance with the aspect of the cylindrical tank and the uplift ratio of the tank bottom plate.


Author(s):  
Tomoyo Taniguchi ◽  
Teruhiro Nakashima ◽  
Yuuichi Yoshida

Effects of bending stiffness of the tank bottom plate and out-of-round deformation of cylindrical shell on uplift of the un-anchored flat-bottom cylindrical shell tanks are investigated. Numerical tank models whose bottom plate has different bending stiffness reveal that changes in bending stiffness of the tank bottom plate may have little influence on uplift of the tanks. Contrary, numerical tank models whose cylindrical shell is stiffed differently reveal that out-of-round deformation of the cylindrical shell may have significant influence on uplift of the tanks. In addition, uplift of the tanks may have little influence on development of waves on the fluid surface like sloshing.


Author(s):  
Teruhiro Nakashima ◽  
Tomoyo Taniguchi

In analyzing the rocking motion of unanchored flat-bottom cylindrical shell tanks, the fluid-structure interaction and the impact between the tank bottom plate and tank foundation should be treated adequately. Employing harmonic excitation, this paper examines the applicability of the explicit FE-Analysis technique for analyzing the rocking motion of a flat-bottom cylindrical shell tank model. Since the tank model possesses a thick and elastic bottom plate, the model tank pivots upon from an edge of the bottom plate to another edge of that reciprocally. The rocking motion of the model tank to the harmonic excitation is numerically computed and the uplift displacement of the tank is compared with experimental result. Agreement between the numerical and experimental results implies that the explicit FE-Analysis is capable of analyzing the rocking motion of cylindrical shell tanks subjected to the earthquake excitation.


Author(s):  
Tomoyo Taniguchi

Employing a few feasible physical quantities of liquid related to the rocking motion of tanks, this paper tries to understand the fundamental dynamics of the rocking motion of tanks. Introducing the effective mass of liquid for rocking motion and for rocking-bulging interaction motions, the equations of motion are derived by analogue of rocking motion between rigid bodies and tanks. Using the exclusive tanks that possess the rigid-doughnuts-shape bottom plate that guarantees the uplift region of the bottom plate and the extent of the effective mass of liquid for rocking motion, the harmonic shaking tests are carried out. The proposed procedures can stepwise trace the base shear and the uplift displacement of the model tanks used herein.


Author(s):  
Katsuhisa Fujita ◽  
Keiji Matsumoto

As the flexible plates, the papers in printing machines, the thin plastic and metal films, and the fluttering flag are enumerated. In this paper, the flexible plate is assumed to be stationary in an axial flow although both the stationary plate and the axially moving plate can be thought. The fluid is assumed to be treated as an ideal fluid in a subsonic domain, and the fluid pressure is calculated using the velocity potential theory. The coupled equation of motion of a flexible cantilevered plate is derived in consideration of the added mass, added damping and added stiffness, respectively. The velocity potential is obtained by assuming the unsteady axial fluid velocity to be zero at the trailing edge of a flexible cantilevered plate, neglecting the effect of a circulation. The complex eigenvalue analysis is performed for the stability analysis. In order to investigate the validity of the proposed analysis, another stability analysis is also performed by using the non-circulatory aerodynamic theory. The comparison between both solutions is investigated and discussed. Changing the velocities of a fluid and the specifications of a plate as parametric studies, the effects of these parameters on the stability of a flexible cantilevered plate are investigated.


Author(s):  
Tomoyo Taniguchi

The rocking dynamics of the tank is discussed by introducing the rock-translation interaction. The centrifugal, inertia and Coriolis forces accompanied with non-inertial coordinate system are incorporated into the conventional and translational tank-liquid system. Moreover, the reaction forces from the tank-liquid system are taken rocking system into account. As the beginning of series researches, using a rigid cylinder and a tank with rigid bottom plate, the necessity of the rock-translation interaction for evaluating rocking responses of the tank is highlighted. In addition, the sufficient friction to enter and sustain a rocking motion of the tank is discussed based on time histories of horizontal and vertical reaction forces on the pivoting edge.


Sign in / Sign up

Export Citation Format

Share Document