Dynamic Interaction Between a Straight Tube and an Anti-Vibration Bar

Author(s):  
Isabelle Nowlan ◽  
Annie Ross ◽  
Michel J. Pettigrew

Fretting-wear is a known problem in steam generator U-tubes. These tubes are supported by flat bars called anti-vibration bars (AVB) in the plane of the U-bend. Clearances between the tubes and the bars are designed to be minimal, but cumulative tolerances and manufacturing variations may lead to clearances larger than expected. Large clearances may result in ineffective support leading to in-plane and out-of-plane motion causing fretting-wear and impact abrasion. In the present work, the problem is investigated with a single two span tube, an anti-vibration bar at mid-span and a local excitation force. The dynamic behavior of a tube with simple supports at both ends and an anti-vibration bar at mid-span is characterized. The influence of clearance, preload and tilt of the support on the dynamics of the tube are investigated experimentally. The results indicate that the fretting-wear work-rate is very low with preloads, reaches a maximum around a zero clearance and diminish again for larger clearances. The tilt of the anti-vibration bar in our experiments seems to change the dynamic behavior of the tube.

Author(s):  
V. Lalonde ◽  
A. Ross ◽  
M. J. Pettigrew ◽  
I. Nowlan

A first experimental work was previously carried out to study the dynamic behavior of a tube simply supported at both ends in interaction with an anti-vibration bar at mid-span. This paper presents modifications to the previous setup with the aim of improving the accuracy of the results. A comparison of the dynamic behavior of the tube is made between both setups. The objective of this experimental study is to characterize the vibration behavior of U-tubes found in steam generators of nuclear power plants. Indeed, two-phase cross-flow in the U-tubes section of steam generators can cause many problems related to vibration. In fact, flow-induced vibration of the U-tubes can cause impacts or rubbing of the tubes against their flat bar supports. Variation of the clearance between the AVB and the U-tubes may lead to ineffective supports. The resulting in-plane and out-of-plane motions of the tubes are causing fretting-wear and impact abrasion. In this study, the clearance between the tube and the AVB, as well as the amplitude, form and frequency of the excitation force are controlled parameters. The first two modes of the tube are studied. The modifications made to the setup lead to significant improvements in the results. The natural frequencies of both setups are compared to theoretical values. The difference between experimental and theoretical frequencies confirms that the new setup better represents the theoretical model of a simply supported tube. The damping of both setups is also compared to values found in literature. The results show that the new setup is more representative of realistic steam generator situations. Compared to the first setup, the displacements of the new setup clearly indicate that the movement of the tube is mostly parallel to the flat bar and in the same direction as the excitation force. The whirling motion of the tube is prevented in the new setup. The accuracy of the contact force as a function of clearance was also improved. The use of more sensitive force sensors helped to reduce the noise level of the contact force. Finally, the dynamic interaction between the tube and the AVB, defined by the fretting wear work-rate, presents a more consistent behavior. The maximum work-rate occurs when the tube is excited around the second mode for clearance between −0.10 and 0.00 mm. Such clearance between the tube and the AVB should then be avoided to minimize fretting damage.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Téguewindé Sawadogo ◽  
Njuki Mureithi

Having previously verified the quasi-steady model under two-phase flow laboratory conditions, the present work investigates the feasibility of practical application of the model to a prototypical steam generator (SG) tube subjected to a nonuniform two-phase flow. The SG tube vibration response and normal work-rate induced by tube-support interaction are computed for a range of flow conditions. Similar computations are performed using the Connors model as a reference case. In the quasi-steady model, the fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives. These forces have been measured in two-phase flow over a wide range of void fractions making it possible to model the effect of void fraction variation along the tube span. A full steam generator tube subjected to a nonuniform two-phase flow was considered in the simulations. The nonuniform flow distribution corresponds to that along a prototypical steam-generator tube based on thermal-hydraulic computations. Computation results show significant and important differences between the Connors model and the two-phase flow based quasi-steady model. While both models predict the occurrence of fluidelastic instability, the predicted pre-instability and post instability behavior is very different in the two models. The Connors model underestimates the flow-induced negative damping in the pre-instability regime and vastly overestimates it in the post instability velocity range. As a result the Connors model is found to underestimate the work-rate used in the fretting wear assessment at normal operating velocities, rendering the model potentially nonconservative under these practically important conditions. Above the critical velocity, this model largely overestimates the work-rate. The quasi-steady model on the other hand predicts a more moderately increasing work-rate with the flow velocity. The work-rates predicted by the model are found to be within the range of experimental results, giving further confidence to the predictive ability of the model. Finally, the two-phase flow based quasi-steady model shows that fluidelastic forces may reduce the effective tube damping in the pre-instability regime, leading to higher than expected work-rates at prototypical operating velocities.


2003 ◽  
Vol 125 (5) ◽  
pp. 895-901 ◽  
Author(s):  
Michael G. Olsen ◽  
Chris J. Bourdon

In microscopic particle image velocimetry (microPIV) experiments, the entire volume of a flowfield is illuminated, resulting in all of the particles in the field of view contributing to the image. Unlike in light-sheet PIV, where the depth of the measurement volume is simply the thickness of the laser sheet, in microPIV, the measurement volume depth is a function of the image forming optics of the microscope. In a flowfield with out-of-plane motion, the measurement volume (called the depth of correlation) is also a function of the magnitude of the out-of-plane motion within the measurement volume. Equations are presented describing the depth of correlation and its dependence on out-of-plane motion. The consequences of this dependence and suggestions for limiting its significance are also presented. Another result of the out-of-plane motion is that the height of the PIV signal peak in the correlation plane will decrease. Because the height of the noise peaks will not be affected by the out-of-plane motion, this could lead to erroneous velocity measurements. An equation is introduced that describes the effect of the out-of-plane motion on the signal peak height, and its implications are discussed. Finally, the derived analytical equations are compared to results calculated using synthetic PIV images, and the agreement between the two is seen to be excellent.


1992 ◽  
Vol 96 (10) ◽  
pp. 7229-7236 ◽  
Author(s):  
Marek Z. Zgierski ◽  
Francesco Zerbetto ◽  
Young‐Dong Shin ◽  
Edward C. Lim

Sign in / Sign up

Export Citation Format

Share Document