Effect of KIII on Fatigue Crack Growth Behavior

Author(s):  
Masanori Kikuchi ◽  
Yoshitaka Wada ◽  
Chikako Ohdama

Mixed mode fatigue tests are conducted using surface cracked specimen. Slant surface cracked specimens are made where crack angle is 15°, 30°, 45° and 60°. It is shown that factory roof is made at deepest point of surface crack due to ΔKIII, and crack growth rate decreases by the factory roof. Fatigue crack growth is simulated using S-version FEM (Finite Element Method) using crack growth criteria. It is shown that conventional crack growth criteria are not available to predict fatigue crack growth with factory roof. In this study, modified criterion for the prediction of crack growth rate is proposed. By using this criterion, fatigue crack growth simulation is conducted, and results are compared with those of experiments and discussed.

Author(s):  
Masanori Kikuchi ◽  
Yoshitaka Wada ◽  
Chikako Ohdama

In this study, mixed-mode fatigue tests are conducted using surface-cracked specimens. Slant surface-cracked specimens are prepared with crack angles of 15 deg, 30 deg, 45 deg, and 60 deg. It is shown that a “factory roof” fracture is formed at the deepest point of the surface crack due to ΔKIII and causes the crack growth rate to decrease. Additionally, fatigue crack growth is simulated using the superposition finite element method (FEM) with crack growth criteria. It is shown that conventional crack growth criteria are not applicable to factory roof fractures. Finally, a modified criterion for the prediction of crack growth rate is proposed, fatigue crack growth simulation is conducted using this criterion, and the results are compared with experimental results.


1988 ◽  
Vol 133 ◽  
Author(s):  
G. M. Camus ◽  
D. J. Duquette ◽  
N. S. Stoloff

ABSTRACTStress-controlled fatigue tests and fatigue crack growth rate tests respectively have been carried out on two Ni3Al Cr/Zr alloys, IC 218 at 600°C and 800°C, and IC 221 at 800°C, in vacuum, at various test frequencies. Decreasing the test frequency and/or increasing the temperature leads to a decrease in the number of cycles to failure, and a gradual disappearance of a fatigue fracture zone. In fatigue crack propagation tests, the crack growth rate only decreases at the lowest frequency and remains constant in the major part of the frequency range investigated. The fatigue propagation mode in all cases is intergranular. These trends are shown in both cases to be related to a true creep component but, under fatigue crack growth test conditions, crack blunting intervenes gradually as the frequency is decreased, leading therefore to a less severe frequency effect.


Author(s):  
Wenfeng Tu ◽  
Xiaogui Wang ◽  
Zengliang Gao

The experiments of mixed Mode I-II fatigue crack growth with altering loading direction were conducted with compact specimens made of 16MnR steel. The specimens were tested under three loading steps. When the crack reached a certain length in the first step, the loading direction was switched to a certain angle. Finally, the loading direction was returned to the original orientation. The crack grow direction had a tendency perpendicular to the loading axis. Right after the loading direction was changed, the crack growth rate was retarded. A new approach developed was used to predict the crack growth behavior. The elastic-plastic stress analysis was performed using the finite element method with the implementation of a cyclic plasticity model. Based on the stress-strain response, fatigue damage near the crack tip was determined by a multi-axial fatigue criterion. Both the crack growth rate and cracking direction were obtained according to the maximum fatigue damage distribution on the critical material plane. The predictions for the crack growth behavior including the crack growth rate and crack growth path were in agreement with the experimental data.


2007 ◽  
Vol 353-358 ◽  
pp. 545-548
Author(s):  
Si Yon Bae ◽  
Bum Joon Kim ◽  
Byeong Soo Lim

There exists strong environmental and economic pressure to increase the thermal efficiency of fossil fuel power stations and this has led to a steady increase in operating temperature and pressure resulting in the world wide construction plans for ultra super-critical power plants. Consequently, in order to improve the thermal efficiency of power plant, there has been a strong drive to develop more advanced heat resistant steels with excellent creep, high temperature fatigue and thermal fatigue resistant properties as well as superior oxidation and corrosion resistant properties. In this study, the test material was P122 alloy which was developed for ultra super-critical power plant. To measure the fatigue crack growth rate in low #K range, fatigue tests were performed on the P122 alloy welds by #K decreasing method at three different microstructure (Base metal, HAZ, Weld metal) regions. Microstructure observation and micro-hardness tests performed for all three regions to find the relationship among the crack growth rate, microstructure and hardness. Fatigue tests were performed with compact tension specimens at 600°C, 650°C and 700°C at the loading frequency of 20Hz.


Author(s):  
Ragupathy Kannusamy ◽  
K. Ramesh

Aircraft and pressure vessel components experience stresses that are negative biaxial or multiaxial in nature. Biaxiality is defined as the ratio of stress applied parallel and normal to the crack front. In recent years many experimental studies have been conducted on fatigue crack growth under various biaxial loading conditions. Biaxial loadings affect crack front stresses and strains, fatigue crack growth rate and direction, and crack tip plastic zone size and shape. Many of these studies have focused on positive biaxial loading cases. No conclusive study has been reported out yet that accurately quantifies the influence of negative biaxiality on fatigue crack growth behavior. Lacking validation, implementation on real life problems remains questionable. To ensure safe and optimum designs, it is necessary to better understand and quantify the effect of negative biaxial loading on fatigue crack behavior. In this paper, attempts were made to quantify the effect of biaxial load cases ranging from B = −0.5 to 1.0 on fatigue crack growth behavior. Also an attempt has been made to establish a simplified approach to incorporate the effect of biaxiality into da/dN curves generated from uniaxial loading using an analytical approach without conducting expensive biaxial crack growth testing. Sensitivity studies were performed with existing test data available for AA2014-T6 aluminum alloy. Detailed elastic–plastic finite element analyses were performed with different stress ranges and stress ratios with various crack sizes and shapes on notched and un-notched geometries. Constant amplitude loads were applied for the current work and comparison studies were made between uniaxial and different biaxial loading cases. It was observed from the study that negative biaxiality has a very pronounced effect on the crack growth rate and direction for AA2014-T6 if the externally applied load exceeds 20% of the yield strength as compared with 40% of externally applied load for alloy of steel quoted in the literature.


Author(s):  
Radu Dimitriu ◽  
Stephen Maddox

It is common practice to conduct fatigue tests on full-scale girth welded pipes in resonance bending with a static axial mean stress induced by internal water pressure. Clean tap water is used, which gradually stagnates with time during a long endurance test, and therefore it is generally assumed that it has no significant effect on the fatigue lives of cracks propagating from the inside. However, important conclusions are drawn from such tests, especially when they relate to risers, and therefore there is a need to check this. In a different context there is a similar need to check the effect of soap solution on fatigue. This is often applied during fatigue tests on welded joints that fail from an accessible weld toe as an aid to crack detection. Furthermore, it may continue to be applied when a crack has been detected in order to produce beachmarks on the fatigue fracture surface by staining. The present paper presents the results of a series of fatigue crack growth rate (FCGR) tests that aimed to establish the effects of clean water or soap solution on the fatigue performance of welded structural steel. The tests were carried out on standard single edge-notched bend (SENB) specimens machined from girth welds in X65 grade steel pipe. Comparative tests were conducted at ambient temperature in air, tap water, de-ionized water and soap solution environments. Noting the general finding that corrosion-fatigue crack growth rate increases with decrease in load cycling frequency, the influence of frequency between 0.1 and 10Hz was investigated.


Author(s):  
Binbin Zhou ◽  
Changyu Zhou ◽  
Xiaohua He

Abstract In this paper, the fatigue crack growth behavior of Zr702/TA2/Q345R composite plate with a through-wall crack and a crack normal to interface for SENT specimen are studied. For the through-wall crack, the mutual interference in fatigue crack growth rate is found. The crack growth rate of the through-wall crack on both sides in Zr702/TA2/Q345R composite plate depends on the difference of stress intensity factors amplitude caused by the different positions of crack tips on both sides and the crack growth rate in corresponding homogeneous material. For the crack normal to interface, two crack propagation directions are taken into account. When crack initiates from the lower strength material side, the crack growth rate decreases to the minimum before crack penetrates the interface. After crack penetrates the interface, crack growth rate accelerates continuously. When crack initiates from the higher strength material side, the fatigue crack growth rate generally increases with the crack length. For both crack forms, all experiment results demonstrate that the crack growth rate is dependent on the competition of the stress intensity factor amplitude, the crack growth rate in corresponding homogeneous material and the interface strength. Besides, finite element results show that elastic mismatch results in a significantly change in the distribution of stress intensity factor amplitude.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Ragupathy Kannusamy ◽  
K. Ramesh

Aircraft and pressure vessel components experience stresses that are negative biaxial or multiaxial in nature. Biaxiality is defined as the ratio of stress applied parallel and normal to the crack front. In recent years, many experimental studies have been conducted on fatigue crack growth (FCG) under various biaxial loading conditions. Biaxial loadings affect crack front stresses and strains, fatigue crack growth rate and direction, and crack tip plastic zone size and shape. Many of these studies have focused on positive biaxial loading cases. No conclusive study has been reported out yet that accurately quantifies the influence of negative biaxiality on fatigue crack growth behavior. Lacking validation, implementation on real life problems remains questionable. To ensure safe and optimum designs, it is necessary to better understand and quantify the effect of negative biaxial loading on fatigue crack behavior. This paper presents the results of a study to quantify the effect of biaxial load cases ranging from B = −0.5 to 1.0 on fatigue crack growth behavior. Also, a simplified approach is presented to incorporate the effect of biaxiality into da/dN curves generated from uniaxial loading using an analytical approach without conducting expensive biaxial crack growth testing. Sensitivity studies were performed with existing test data available for AA2014-T6 aluminum alloy. Detailed elastic-plastic finite element analyses were performed using the different stress ranges and stress ratios with various crack sizes and shapes on notched and unnotched geometries. Constant amplitude loads were applied for the current work and comparison studies were made between uniaxial and different biaxial loading cases. It was observed from the study that negative biaxiality has a very pronounced effect on the crack growth rate and direction for AA2014-T6 if the externally applied load equal to 30% of the yield strength as compared with 40% of externally applied load for steel alloy quoted in the literature.


Sign in / Sign up

Export Citation Format

Share Document