Study on Power Generation Using Unstable Energy by In-Flow Fluidelastic Vibration

Author(s):  
Takuya Sumitani ◽  
Shinichiro Hagiwara ◽  
Tomomichi Nakamura

In-flow instability of tube arrays is one of recent major issues to be examined in the heat exchanger design since the event at a nuclear power plant in California [1]. In our previous tests [2], the effect of the pitch-diameter ratio in triangular arrays is reported. This is one of the present major issues in the nuclear industry. On the other hand, there are some trials [3] to produce the electric power by the phenomenon of the flow-induced vibration. They are mainly using the vortex shedding, but in this report the power generation by the unstable vibration is investigated. It is spotlighted the combination between the unstable vibration and the power generation whether the limit cycle exists or not. This report introduces the result on the existence of the limit cycle. Many engineers have attempted to produce electric power using semi-conductor devices, but they could not obtain enough power. Then, the device using the electro-magnetic system is used here. The in-flow instability has a small effect on the fluid flow compared with the usual fluidelastic vibration in the transverse direction, because the in-flow movement does not disturb the flow path compared to the transverse fluidelastic vibration. The coil-magnet system is set on the top of the flexible cylinder cantilevered from the bottom. A three by three array of cylinders in a triangular pattern is set in a small wind tunnel. When the flow velocity increases, the cylinder array becomes unstable in the in-flow direction as similarly to the transverse direction, and it produces the electricity in the coil. However, as the power generation means energy dissipation, resulting in increase of the system damping, the effect on the instability is examined. At the end of this report, an analytical solution is introduced to explain the measured results. It is successfully completed to show the existence of the limit cycle.

Author(s):  
Tomomichi Nakamura ◽  
Shinichiro Hagiwara ◽  
Joji Yamada ◽  
Kenji Usuki

In-flow instability of tube arrays is a recent major issue in heat exchanger design since the event at a nuclear power plant in California [1]. In our previous tests [2], the effect of the pitch-to-diameter ratio on fluidelastic instability in triangular arrays is reported. This is one of the present major issues in the nuclear industry. However, tube arrays in some heat exchangers are arranged as a square array configuration. Then, it is important to study the in-flow instability on the case of square arrays. The in-flow fluidelastic instability of square arrays is investigated in this report. It was easy to observe the in-flow instability of triangular arrays, but not for square arrays. The pitch-to-diameter ratio, P/D, is changed from 1.2 to 1.5. In-flow fluidelastic instability was not observed in the in-flow direction. Contrarily, the transverse instability is observed in all cases including the case of a single flexible cylinder. The test results are finally reported including the comparison with the triangular arrays.


Author(s):  
William D. Rezak

One of America’s best kept secrets is the success of its nuclear electric power industry. This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result—the US nuclear industry is alive and well. Perhaps it’s time to start anew the building of nuclear power plants. Let’s take the wraps off the major successes achieved in the nuclear power industry. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in 34 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crisis in California. Traditionally, the evaluation of electric power generation facility performance has focused on the ability of plants to produce at design capacity for high percentages of the time. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year’s operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation is minimal. It’s time, once more, to turn to the safe, reliable, environmentally friendly nuclear power alternative.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Tomomichi Nakamura ◽  
Yoshiaki Fujita ◽  
Takuya Sumitani

The in-flow instability of cylinder arrays corresponds to the in-plane instability of U-bend tubes in steam generators. This rarely occurring phenomenon has recently been observed in a nuclear power plant in the U.S. For this reason, the importance of studying this instability has recently increased. The fluidelastic instability of a cylinder array caused by cross-flow was found to easily occur in air-flow and hardly in water-flow in our previous report. The present report introduces the results of this phenomenon in several patterns of triangular cylinder arrays in air-flow. The pitch spacing between cylinders is one of the parameters, which varies from P/D = 1.2 to 1.5, for a five-by-five cylinder array. The instability is examined both in the in-flow direction and in the transverse direction. The test cylinders are supported with thin plates to move in one direction. The number and the location of the flexibly supported cylinders are the other parameters. Differences between the instability in the in-flow and in the transverse direction are found. Among these differences the most important is the fact that the fluidelastic instability has not been observed for a single flexible cylinder in the in-flow direction, although it is observed in the transverse direction. However, the present preliminary results suggest that the in-flow instability may be estimated with the Connors' type formula as likely as in the transverse direction case.


Author(s):  
William D. Rezak

One of America’s best kept secrets is the success of its nuclear electric power industry. This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result—the US nuclear industry is alive and well. Perhaps it’s time to start anew the building of nuclear power plants. Let’s take the wraps off the major successes achieved in the nuclear power industry. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in over 30 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crises in California and the Northeast. Traditionally, the evaluation of electric power generation facility performance has focused on the ability of plants to produce at design capacity for high percentages of the time. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year’s operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation is minimal. It’s time, once more, to turn to the safe, reliable, environmentally friendly nuclear power alternative.


Author(s):  
Tomomichi Nakamura ◽  
Yoshiaki Fujita ◽  
Takuya Sumitani ◽  
Shinichiro Hagiwara

The in-flow instability of cylinder arrays corresponds to the in-plane instability of U-bend tubes in steam generators. This rarely occurring phenomenon has recently been observed in a nuclear power plant in U.S.A. For this reason, the importance of studying this instability has recently increased. The fluidelastic instability of a cylinder array caused by cross-flow was found to easily occur in air-flow and hardly in water-flow in our previous report. The present report introduces the results of this phenomenon in several patterns of triangular cylinder arrays in air-flow. The pitch spacing between cylinders is one of the parameters, which varies from P/D = 1.2 to 1.5, for a five-by-five cylinder array. The instability is examined both in the in-flow direction and in the transverse direction. The test cylinders are supported with thin plates to move in one direction. The number and the location of the flexibly supported cylinders are the other parameters. Differences between the instability in the in-flow and in the transverse direction are found. Among these differences the most important is the fact that the fluidelastic instability has not been observed for a single flexible cylinder in the in-flow direction, although it is observed in the transverse direction. However, the in-flow instability can be estimated with the Connors’ type formula as in the transverse direction.


Sign in / Sign up

Export Citation Format

Share Document