Evaluation of Crack Growth of Ni-Base Alloys Under Long Term Cyclic Loading in BWR Environment

Author(s):  
Masao Itatani ◽  
Takuya Ogawa

Crack growth test data of Ni-base alloys under cyclic loading in simulated boiling water reactor (BWR) environment including the effects of load rising time (tr) were evaluated in the view points of both fatigue and stress corrosion cracking (SCC). When the test data were plotted in the relationship between da/dt and Kmax, da/dt monotonically decreased with increasing tr and the stress ratio (R). For alloy 182 weld metal under short tr and/or low R, the crack growth rate assuming SCC is much lower than those of the test data. For alloy 182 under tr = 30 and 1000 s at R = 0.8, the crack growth rate assuming SCC almost coincided with test data. For heat affected zone (HAZ) of alloy 600 base metal (600HAZ), the crack growth rate assuming SCC had much different slope of da/dN-ΔK relationship compared with the test data in the tested range of tr up to 3000 s. From these observations, the contribution of SCC is relatively small and the main mechanism of crack growth is thought to be fatigue for the tested range (tr=1 to 1000 s for weld metal, tr=1 to 3000 s for base metal and R = 0.1 to 0.8). It was assured that the fatigue crack growth formula proposed by the authors accounts the effect of SCC adequately at long tr. Additionally, the applicability of the fatigue crack growth rate formula for austenitic stainless steels to the long term cyclic load was investigated and it was found that the formula can be applied to tr=30000 s.

Author(s):  
Javad Safari ◽  
Ramgopal Thodla ◽  
Ian Merchant ◽  
John Hamilton

Fatigue Crack Growth Rate (FCGR) of reeled pipe (strained & aged) in sour environments was investigated. FCGR frequency scans on different microstructures, i.e. heat affected zone (HAZ), and weld center line (WCL), revealed that, FCGR in corrosive environments increased with decreasing frequency and reached a plateau value at low frequencies of 10mHz to 3mHz. At these ‘plateau frequencies’, FCGR in the moderately sour environment that was investigated were found to be about 10–18× or 30× higher than the in-air values for the WCL and HAZ, respectively. There was no effect of the reeling cycles on the FCGR of the WCL or HAZ specimens. The FCGRs of the WCL were consistently lower than that of the HAZ by about a factor of 2–3× under various conditions. The reason for the lower FCGR of the WCL is not well understood. It is possible that it may be due to the higher yield strength (YS) of the overmatched welds, differing hydrogen concentration and/or diffusion coefficient or possibly due to the differences in the microstructure between the HAZ and WCL. Paris law curves, FCGRs as a function of ΔK (stress intensity factor range), were measured on the HAZ, and WCL (both intrados) at the plateau frequency (10mHz), representative of flowline cyclic loading. They were also measured at a higher frequency of 0.33Hz, representative of Steel Catenary Risers (SCR) cyclic loading associated with wave motion. Comparisons of measured Paris law curves in corrosive environments to those in air were consistent with the results of the frequency scans. There was no effect of number of cycles of reeling on the Paris law curves in the sour environment tested for WCL and HAZ specimens at both the plateau frequency and 0.33Hz. The results of the test program suggest FCGR of WCL and HAZ in the sour environment tested are not affected by number of cycles (up to 5) of straining on the intrados side for the strain level (1.93% per cycle) used in this study.


Author(s):  
David Y. Jeong

For a given material and set of test conditions, fatigue crack propagation behavior can be described by the relationship between cyclic crack-growth rate, da/dN and the fluctuation of stress intensity factor, △K. Such test data are usually displayed in a log-log plot. At intermediate values of △K, fatigue crack-growth data fall along a straight line such that a power-law equation may be used as a curve-fit to the data. Various numerical techniques are applied in order to (1) derive the crack-growth rate and (2) determine the parameters for the power-law equation. Using data from laboratory tests conducted on rail steels, this paper explores the various numerical methods used to characterize fatigue crack-growth behavior. Tests were conducted using two different fracture-mechanics specimens (a standard compact tension specimen and a non-standard single edge notch specimen). Three different numerical techniques were applied to determine the fatigue crack-growth rate, da/dN from test data measuring crack length, a versus number of fatigue cycles, N: (1) secant method, (2) modified secant method, and (3) incremental polynomial method. Four different least squares regression analyses were then applied to determine the parameters for the power law. Moreover, the outcome of these analyses is to determine the combination of numerical techniques which yields the least amount of error when the crack-growth rate equation is integrated and compared to the original a versus N data. Fatigue life calculations performed by integrating the crack-growth rate equation demonstrate the sensitivity of predicted growth rates to the power-law parameters derived from the different regression analyses. This paper explores the various numerical methods and techniques employed to analyze fatigue crack growth data using test data on rail steels.


2018 ◽  
Vol 165 ◽  
pp. 21014 ◽  
Author(s):  
Manuel Thomas ◽  
Raghu V. Prakash ◽  
S Ganesh Sundara Raman ◽  
M. Vasudevan

Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG) process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead). If the number of passes is increased (Multi-Pass TIG welding), it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG) and Activated TIG (A-TIG) welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1). MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.


1975 ◽  
Vol 97 (3) ◽  
pp. 206-213 ◽  
Author(s):  
G. J. Petrak ◽  
J. P. Gallagher

Baseline mechanical property data, constant amplitude fatigue crack growth rate data, and single-peak overload test data are presented for HP-9Ni-4Co-30C steel heat treated to three strength levels. These data are then used to evaluate a new model proposed for defining the instantaneous crack growth rate following an overload. The constant amplitude crack growth rates are affected by the strength level of the material with the higher strength exhibiting the faster cracking rates. The magnitude of retardation following an overload cycle is also shown to be influenced by the strength of the material. The lower strength steel displayed significantly more retardation for the same load levels. A general yield zone model is used to predict retarded growth rates. These predictions are shown to correlate quite well with the test data. The model successfully accounts for the different amounts of retardation associated with the different strength levels of the material.


Author(s):  
K. N. Pandey ◽  
Saurabh Kumar Gupta

Parts and structures are often welded together in different ways, as it is cost and weight effective in comparison to conventional bolted and riveted joints. Steel followed by aluminum alloys, are the most frequently welded metal. Welding results in inhomogeneous and different materials near the joint which may lead to defects. These defects may be the cause of initiation and development of cracks as a result of cyclic loading. In the present work fatigue crack growth rate of a mild steel plate welded by friction stir welding (FSW) has been studied under constant amplitude load with different values of R-ratio. Hardness in the base metal was found to be low in comparison to thermo-mechanically affected and weld nugget zone. Grain size of weld zone was much smaller to base metal and it was the same to heat affected zone and base metal. A C-T specimen with notch at welded and non welded region was tested to get the behavior of Fatigue Crack Growth (FCG) at different zones. It has been found that the fatigue crack growth rate in welded material is lower as compared to base material.


Sign in / Sign up

Export Citation Format

Share Document