Correlations Between Charpy V-Notch Impact Energy and Fracture Toughness of Nuclear Reactor Pressure Vessel (RPV) Steels

Author(s):  
Meifang Yu ◽  
Zhen Luo ◽  
Y. J. Chao

Both Charpy V-notch (CVN) impact energy and fracture toughness are parameters reflecting toughness of the material. Charpy tests are however easy to perform compared to standard fracture toughness tests, especially when the material is irradiated and quantity is limited. Correlations between the two parameters are therefore of great significance, especially for reactor pressure vessel (RPV) structural integrity assessment. In this paper, correlations between CVN impact energy and fracture toughness of three commonly used RPV steels, namely Chinese A508-3 steel, USA A533B steel, Euro 20MnMoNi55 steel, are investigated with two methods. One method applies a direct conversion using empirical formulas and the other adopts the Master Curve method. It is found that when the empirical formula is used, the difference between the predicted fracture toughness (from the CVN impact energy) and actual test data is relatively small in upper shelf, lower shelf and the bottom of transition region, while relatively large in other parts of the transition region. When the Master Curve method is adopted, whether the reference temperature T0 is estimated through temperature at 28J or 41J CVN impact energy, the predicted fracture toughness values of the three steels are consistent with actual test data. The reference temperature T0 is also estimated through the IGC-parameter correlation and through a combination of empirical formula and multi-temperature method. Both procedures show excellent agreement with test results. The mean value of T0 estimated from T28J, T41J, IGC-parameters and the combination method is denoted by TQ-ave and is then used as the final reference temperature T0 for the Master Curve determination. Accuracy of TQ-ave (and therefore the Master Curve method) is demonstrated by comparison with actual test data of the three RPV steels. It is concluded that Master Curve method provides a reliable procedure for predicting fracture toughness in the transition region utilizing limited CVN impact energy data from open literature.

Author(s):  
Anssi Laukkanen ◽  
Pekka Nevasmaa ◽  
Heikki Keina¨nen ◽  
Kim Wallin

Local approach methods are to greater extent used in structural integrity evaluation, in particular with respect to initiation of an unstable cleavage crack. However, local approach methods have had a tendency to be considered as methodologies with ‘qualitative’ potential, rather than quantitative usage in realistic analyses where lengthy and in some cases ambiguous calibration of local approach parameters is not feasible. As such, studies need to be conducted to illustrate the usability of local approach methods in structural integrity analyses and improve upon the transferability of their intrinsic, material like, constitutive parameters. Improvements of this kind can be attained by constructing improved models utilizing state of the art numerical simulation methods and presenting consistent calibration methodologies for the constitutive parameters. The current study investigates the performance of a modified Beremin model by comparing integrity evaluation results of the local approach model to those attained by using the constraint corrected Master Curve methodology. Current investigation applies the Master Curve method in conjunction with the T-stress correction of the reference temperature and a modified Beremin model to an assessment of a three-dimensional pressure vessel nozzle in a spherical vessel end. The material information for the study is extracted from the ‘Euro-Curve’ ductile to brittle transition region fracture toughness round robin test program. The experimental results are used to determine the Master Curve reference temperature and calibrate local approach parameters. The values are then used to determine the cumulative failure probability of cleavage crack initiation in the model structure. The results illustrate that the Master Curve results with the constraint correction are to some extent more conservative than the results attained using local approach. The used methodologies support each other and indicate that with the applied local approach and Master Curve procedures reliable estimates of structural integrity can be attained for complex material behavior and structural geometries.


2019 ◽  
Vol 795 ◽  
pp. 66-73
Author(s):  
Ya Lin Zhang ◽  
Hu Hui

The low temperature tensile properties, Charpy-V notch impact performance and fracture toughness of SA738Gr.B steel plate for domestic CAP1400 containment vessel were tested. On this basis, the reference temperature T0 of the master curve method was obtained. The fracture toughness distribution of the steel in the whole ductile-brittle transition zone is predicted and its applicability is verified by the theoretical basis of the master curve method. The results show that the reference temperature of SA738Gr.B steel master curve method is-123.6 °C. The master curve method is appropriate for SA738Gr.B steel with domestic nuclear containment vessel.


Author(s):  
Naoki Miura ◽  
Naoki Soneda

The fracture toughness Master Curve gives a universal relationship between the median of fracture toughness and temperature in the ductile-brittle transition temperature region of ferritic steels such as reactor pressure vessel (RPV) steels. The Master Curve approach specified in the ASTM standard theoretically provides the confidence levels of fracture toughness in consideration of the inherent scatter of fracture toughness. The authors have conducted a series of fracture toughness tests for typical Japanese RPV steels with various specimen sizes and shapes, and ascertained that the Master Curve can be well applied to the specimens with the thickness of 0.4-inches or larger. Considering the possible application of the Master Curve method coexistent with the present surveillance program for operating RPVs, the utilization of miniature specimens which can be taken from broken halves of surveillance specimens is quite important for the efficient determination of the Master Curve from the limited volume of the materials of concern. In this study, fracture toughness tests were conducted for typical Japanese RPV steels, SFVQ1A forging and SQV2A plate materials, using the miniature C(T) specimens with the thickness of 4 mm following the procedure of the ASTM standard. The results showed that the differences in test temperature, evaluation method, and specimen size did not affect the Master Curves, and the fracture toughness indexed by the reference temperature, T0, obtained from miniature C(T) specimens were consistent with those obtained from standard and larger C(T) specimens. It was also found that valid reference temperature can be determined with the realistic number of miniature C(T) specimens, less than ten, if the test temperature was appropriately selected. Thus, the Master Curve method using miniature C(T) specimens could be a practical method to determine the fracture toughness of actual RPV steels.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Tohru Tobita ◽  
Yutaka Nishiyama ◽  
Takuyo Ohtsu ◽  
Makoto Udagawa ◽  
Jinya Katsuyama ◽  
...  

We conducted fracture toughness testing on five types of commercially manufactured steel with different ductile-to-brittle transition temperatures. This was performed using specimens of different sizes and shapes, including the precracked Charpy-type (PCCv), 0.4T-CT, 1T-CT, and miniature compact tension specimens (0.16T-CT). Our objective was to investigate the applicability of 0.16T-CT specimens to fracture toughness evaluation by the master curve method for reactor pressure vessel (RPV) steels. The reference temperature (To) values determined from the 0.16T-CT specimens were overall in good agreement with those determined from the 1T-CT specimens. The scatter of the 1T-equivalent fracture toughness values obtained from the 0.16T-CT specimens was equivalent to that obtained from the other larger specimens. Furthermore, we examined the loading rate effect on To for the 0.16T-CT specimens within the quasi-static loading range prescribed by ASTM E1921. The higher loading rate gave rise to a slightly higher To, and this dependency was almost the same for the larger specimens. We suggested an optimum test temperature on the basis of the Charpy transition temperature for determining To using the 0.16T-CT specimens.


Author(s):  
Volodymyr M. Revka ◽  
Liudmyla I. Chyrko

An important issue in the safety operation of WWER-1000 type reactor is a decrease in fracture toughness for reactor pressure vessel steels due to neutron irradiation. This effect for RPV metal is known as radiation embrittlement. The radiation induced temperature shift of the fracture toughness transition curve is considered as a measure of the embrittlement rate. The Charpy impact and fracture toughness specimens are included in the surveillance program for an assessment of changes in fracture toughness of RPV materials. The present analysis is based on a large data set which includes mostly experimental results for pre-cracked Charpy specimens from a WWER-1000 RPV surveillance program. A Master curve approach is applied to analyze the surveillance test data with respect to a shape of the fracture toughness transition curve and a scatter of KJC values. The RPV base and weld metal in unirradiated, thermally aged and irradiated conditions are considered in this study. The maximum shift in a reference temperature T0 due to irradiation is 107 degree Celsius. It is shown that the Master curve, 5 % and 95 % tolerance bounds describe adequately the temperature dependence and the statistical scatter of KJC values for WWER-1000 RPV steels both in unirradiated condition and after irradiation up to design as well as long term operation neutron fluence. Furthermore, a development of the Weibull plots for considered data sets is shown that the Weibull slope is close to the expected one of 4 on average. Finally, a comparison of the reference temperature T0 and a scatter of KJC values derived from the pre-cracked Charpy and 0,5T C(T) specimens of base and weld metal in unirradiated condition is done. The analysis has shown a significant discrepancy between the T0 values derived from the two different types of specimens for both RPV metals.


Author(s):  
Tohru Tobita ◽  
Yutaka Nishiyama ◽  
Takuyo Ohtsu ◽  
Makoto Udagawa ◽  
Jinya Katsuyama ◽  
...  

To examine the applicability of Mini-CT (0.16T-CT) specimens to fracture toughness evaluation by Master Curve method, we conducted fracture toughness tests using specimens with different size and shapes such as pre-cracked Charpy-type, 0.4T-CT and 1T-CT in addition to 0.16T-CT specimens for commercially manufactured five kinds of SA533B Cl.1 steels with different ductile-to-brittle transition temperature. Reference temperature To determined by 0.16T-CT specimens were approximately equal to those of 1T-CT specimens for all materials. The Weibull slope of 0.16T-CT specimens was similar to those of other larger specimens. We also examined a loading rate effect on To of 0.16T-CT specimens within the quasi-static loading range prescribed by ASTM E1921. There was no loading rate effect peculiar to 0.16T-CT specimens, while the higher loading rate gave rise to slightly higher To.


Author(s):  
Naoki Miura ◽  
Naoki Soneda ◽  
Taku Arai ◽  
Kenji Dohi

The Master Curve method has been proposed and recognized worldwide as an alternative approach to evaluate fracture toughness of reactor pressure vessel (RPV) steels in brittle-to-ductile transition temperature range. This method theoretically provides the confidence levels of fracture toughness in consideration of the statistical distribution, which is an inherent property of fracture toughness. In this study, a series of fracture toughness tests was conducted for typical Japanese RPV steels, SFVQ1A and SQV2A, to identify the effects of test temperature, specimen size, and loading rate, and the applicability of the Master Curve method was experimentally validated. The differences in test temperature and specimen size did not affect master curves. In contrast, increasing loading rate significantly shifted master curves to higher temperatures. The lower bound curve based on the master curve could conservatively envelop all of the experimental fracture toughness data. The present rule, in which the lower limit of fracture toughness is indirectly determined by Charpy impact test results, can be too conservative, while the application of the Master Curve method may significantly reduce the conservativity of the allowable level of fracture toughness.


Author(s):  
William L. Server ◽  
Timothy J. Griesbach ◽  
Stan T. Rosinski

The Master Curve method has been developed to determine fracture toughness of a specific material in the brittle-to-ductile transition range. This method is technically more descriptive of actual material behavior and accounts for the statistical nature of fracture toughness properties as an alternative to the current ASME Code reference toughness curves. The Master Curve method uses a single temperature, To, as an index of the Master Curve fracture toughness transition temperature. This method has been successfully applied to numerous fracture toughness data sets of pressure vessel steels contained in the Master Curve database, including the beltline materials for the Kewaunee reactor pressure vessel. The database currently contains over 5,500 toughness data records for vessel weld, plate and forging materials, and it is currently being updated to include more recent fracture toughness data. Application of Master Curve fracture toughness data to reactor pressure vessel (RPV) integrity evaluations requires some assumptions relative to the degree of constraint in the fracture toughness test specimens versus the actual assumed RPV flaw. An excessive degree of conservatism can be introduced if the constraint levels are substantially different. In performing a Master Curve evaluation, the analysis may be restricted by the type of fracture toughness data available. Any excess conservatism should be appropriately considered when the overall safety margin is applied. For example, the precracked Charpy three-point bend specimen actually has some advantages over the compact tension specimen when the application involves a shallow surface flaw in a RPV wall. This paper analyzes some key fracture toughness results from several weld data sets containing both unirradiated and irradiated data to evaluate constraint effects in fracture toughness and pre-cracked Charpy specimens. The evaluated To values were compared to determine if there is any difference in bias from specimen geometry between the unirradiated and irradiated data.


Sign in / Sign up

Export Citation Format

Share Document