Investigation of Mechanical Properties and Ductile-Brittle Transition Behaviors of SA738Gr.B Steel Used as Reactor Containment

2019 ◽  
Vol 795 ◽  
pp. 66-73
Author(s):  
Ya Lin Zhang ◽  
Hu Hui

The low temperature tensile properties, Charpy-V notch impact performance and fracture toughness of SA738Gr.B steel plate for domestic CAP1400 containment vessel were tested. On this basis, the reference temperature T0 of the master curve method was obtained. The fracture toughness distribution of the steel in the whole ductile-brittle transition zone is predicted and its applicability is verified by the theoretical basis of the master curve method. The results show that the reference temperature of SA738Gr.B steel master curve method is-123.6 °C. The master curve method is appropriate for SA738Gr.B steel with domestic nuclear containment vessel.

Author(s):  
Anssi Laukkanen ◽  
Pekka Nevasmaa ◽  
Heikki Keina¨nen ◽  
Kim Wallin

Local approach methods are to greater extent used in structural integrity evaluation, in particular with respect to initiation of an unstable cleavage crack. However, local approach methods have had a tendency to be considered as methodologies with ‘qualitative’ potential, rather than quantitative usage in realistic analyses where lengthy and in some cases ambiguous calibration of local approach parameters is not feasible. As such, studies need to be conducted to illustrate the usability of local approach methods in structural integrity analyses and improve upon the transferability of their intrinsic, material like, constitutive parameters. Improvements of this kind can be attained by constructing improved models utilizing state of the art numerical simulation methods and presenting consistent calibration methodologies for the constitutive parameters. The current study investigates the performance of a modified Beremin model by comparing integrity evaluation results of the local approach model to those attained by using the constraint corrected Master Curve methodology. Current investigation applies the Master Curve method in conjunction with the T-stress correction of the reference temperature and a modified Beremin model to an assessment of a three-dimensional pressure vessel nozzle in a spherical vessel end. The material information for the study is extracted from the ‘Euro-Curve’ ductile to brittle transition region fracture toughness round robin test program. The experimental results are used to determine the Master Curve reference temperature and calibrate local approach parameters. The values are then used to determine the cumulative failure probability of cleavage crack initiation in the model structure. The results illustrate that the Master Curve results with the constraint correction are to some extent more conservative than the results attained using local approach. The used methodologies support each other and indicate that with the applied local approach and Master Curve procedures reliable estimates of structural integrity can be attained for complex material behavior and structural geometries.


Author(s):  
Meifang Yu ◽  
Zhen Luo ◽  
Y. J. Chao

Both Charpy V-notch (CVN) impact energy and fracture toughness are parameters reflecting toughness of the material. Charpy tests are however easy to perform compared to standard fracture toughness tests, especially when the material is irradiated and quantity is limited. Correlations between the two parameters are therefore of great significance, especially for reactor pressure vessel (RPV) structural integrity assessment. In this paper, correlations between CVN impact energy and fracture toughness of three commonly used RPV steels, namely Chinese A508-3 steel, USA A533B steel, Euro 20MnMoNi55 steel, are investigated with two methods. One method applies a direct conversion using empirical formulas and the other adopts the Master Curve method. It is found that when the empirical formula is used, the difference between the predicted fracture toughness (from the CVN impact energy) and actual test data is relatively small in upper shelf, lower shelf and the bottom of transition region, while relatively large in other parts of the transition region. When the Master Curve method is adopted, whether the reference temperature T0 is estimated through temperature at 28J or 41J CVN impact energy, the predicted fracture toughness values of the three steels are consistent with actual test data. The reference temperature T0 is also estimated through the IGC-parameter correlation and through a combination of empirical formula and multi-temperature method. Both procedures show excellent agreement with test results. The mean value of T0 estimated from T28J, T41J, IGC-parameters and the combination method is denoted by TQ-ave and is then used as the final reference temperature T0 for the Master Curve determination. Accuracy of TQ-ave (and therefore the Master Curve method) is demonstrated by comparison with actual test data of the three RPV steels. It is concluded that Master Curve method provides a reliable procedure for predicting fracture toughness in the transition region utilizing limited CVN impact energy data from open literature.


Author(s):  
Naoki Miura ◽  
Naoki Soneda

The fracture toughness Master Curve gives a universal relationship between the median of fracture toughness and temperature in the ductile-brittle transition temperature region of ferritic steels such as reactor pressure vessel (RPV) steels. The Master Curve approach specified in the ASTM standard theoretically provides the confidence levels of fracture toughness in consideration of the inherent scatter of fracture toughness. The authors have conducted a series of fracture toughness tests for typical Japanese RPV steels with various specimen sizes and shapes, and ascertained that the Master Curve can be well applied to the specimens with the thickness of 0.4-inches or larger. Considering the possible application of the Master Curve method coexistent with the present surveillance program for operating RPVs, the utilization of miniature specimens which can be taken from broken halves of surveillance specimens is quite important for the efficient determination of the Master Curve from the limited volume of the materials of concern. In this study, fracture toughness tests were conducted for typical Japanese RPV steels, SFVQ1A forging and SQV2A plate materials, using the miniature C(T) specimens with the thickness of 4 mm following the procedure of the ASTM standard. The results showed that the differences in test temperature, evaluation method, and specimen size did not affect the Master Curves, and the fracture toughness indexed by the reference temperature, T0, obtained from miniature C(T) specimens were consistent with those obtained from standard and larger C(T) specimens. It was also found that valid reference temperature can be determined with the realistic number of miniature C(T) specimens, less than ten, if the test temperature was appropriately selected. Thus, the Master Curve method using miniature C(T) specimens could be a practical method to determine the fracture toughness of actual RPV steels.


Author(s):  
Xiang Chen ◽  
Mikhail A. Sokolov ◽  
Yutai Katoh ◽  
Michael Rieth ◽  
Logan N. Clowers

Eurofer97 is one of leading candidates of reduced activation ferritic martensitic (RAFM) steels for first wall structural materials of early demonstration fusion power plants. During fusion plant operation, high neutron irradiation damage on first wall materials can cause irradiation embrittlement and reduce the fracture toughness of RAFM steels. Therefore, it is critical to select proper testing techniques to characterize the fracture toughness of RAFM steels with high fidelity. In this manuscript, we present the feasibility study of using pre-cracked miniature multi-notch bend bar specimens (M4CVN) with a dimension of 45mm (length) × 3.3mm (width) × 1.65mm (thickness) to characterize the transition fracture toughness of Eurofer97 steel based on the ASTM E1921 Master Curve method. The testing yielded a provisional Master Curve reference temperature ToQ of −89°C of unirradiated Eurofer97 steel heat J362A in the normalized and tempered condition. The results are within the normal scatter range of Master Curve reference temperature T0 for Eurofer97 steel, indicating suitability of applying M4CVN specimens for characterizing the transition fracture toughness of Eurofer97 steel.


Author(s):  
Boris Margolin ◽  
Victoria Shvetsova ◽  
Alexander Gulenko ◽  
Valentin Fomenko

For construction of the fracture toughness temperature curve that may be used for WWER RPV integrity assessment on the basis of tests of cracked surveillance specimens, the issues have to be solved as follows. First of all, it is important to determine how fracture toughness varies as a function of temperature, and how the fracture toughness vs. temperature dependence, KJC(T), changes with in-service material degradation due to neutron irradiation. These variations of KJC(T) curve are known to be the shift of KJC(T) curve to higher temperature range and change in the KJC(T) curve shape. At present, two advanced engineering methods are known that allow the prediction of KJC(T) curve on the basis of small-size fracture toughness specimens (for example, pre-cracked Charpy specimens), namely, the Master Curve and the Unified Curve methods. Procedures of test result treatment for the Master Curve and the Unified Curve are very similar. The Master Curve method uses the lateral temperature shift condition and, therefore, does not describe possible change in the KJC(T) curve shape. The Unified Curve method has an advantage as compared with the Master Curve as the Unified Curve describes a variation of the KJC(T) curve shape when degree of embrittlement increases. This advantage becomes important for RPV integrity assessment when the reference KJC(T) curve is recalculated to the crack front length of the postulated flaw that is considerable larger than thickness of surveillance specimens. Application of the KJC(T) curve determined from test results of cracked surveillance specimens to RPV integrity assessment requires also to introduce some margins. These margins have to take into account the type and number of tested specimens and the uncertainty connected with spatial non-homogeneity of RPV materials. Indeed, there is sufficient number of experimental data showing variability in fracture toughness for various parts of RPV. Therefore, situation is possible when the material properties near the postulated flaw will be worse than the properties of surveillance specimens. In the present report, advanced approaches are considered for prediction of fracture toughness for WWER RPV integrity assessment that allow one: • to construct the KJC(T) curve for irradiated RPV steels with any degree of embrittlement; • to provide transferability of fracture toughness data from cracked surveillance specimens to calculation of resistance to brittle fracture of RPV with a postulated flaw.


Author(s):  
Philippa Moore ◽  
Borislava Yordanova ◽  
Yong Lu ◽  
Yin Jin Janin

Abstract The challenges of performing full-thickness fracture toughness tests on steel plates of 100mm thickness and greater means that the use of sub-size specimens is desirable. In this work, 100mm thick parent plate of S690 high strength steel was characterised using SENB fracture toughness specimens with thickness of 12mm, 25mm, 50mm and 100mm. Sub-size specimens were extracted at two different locations through the plate thickness; mid-wall and quarter wall. Sufficient specimens were tested to apply the Master Curve method in ASTM E1921 to predict the behaviour of 100mm thick material from each set of sub-size specimens. The through-thickness microstructural variation in these heavy-wall steel plates meant that significantly different predictions of full-thickness fracture toughness were obtained from the two sampling locations. However, when sampled from the mid-wall location, sub-size specimens down to 25mm thick were able to conservatively predict full-thickness fracture toughness using Master Curve methods.


Sign in / Sign up

Export Citation Format

Share Document