Nuclear Power Plant Fires and Explosions: Part I — Plant Designs and Hydrogen Ignition

Author(s):  
Robert A. Leishear

Requiring further investigation, hydrogen explosions and fires have occurred in several operating nuclear reactor power plants. Major accidents that were affected by hydrogen fires and explosions included Chernobyl, Three Mile Island, and Fukushima Daiichi. Smaller piping explosions have occurred at Hamaoka and Brunsbüttel Nuclear Power Plants. This paper is the first paper in a series of publications to discuss this issue. In particular, the different types of reactors that have a history of fires and explosions are discussed here, along with a discussion of hydrogen generation in commercial reactors, which provides the fuel for fires and explosions in nuclear power plants. Overall, this paper is a review of pertinent information on reactor designs that is of particular importance to this multi-part discussion of hydrogen fires and explosions. Without a review of reactor designs and hydrogen generation, the ensuing technical discussions are inadequately backgrounded. Consequently, the basic designs of pressurized water reactors (PWR’s), boiling water reactors (BWR’s), and pressure-tube graphite reactors (RBMK) are discussed in adequate detail. Of particular interest, the Three Mile Island design for a PWR is presented in some detail.

Author(s):  
M. S. Kalsi ◽  
Patricio Alvarez ◽  
Thomas White ◽  
Micheal Green

A previous paper [1] describes the key features of an innovative gate valve design that was developed to overcome seat leakage problems, high maintenance costs as well as issues identified in the Nuclear Regulatory Commission (NRC) Generic Letters 89-10, 95-07 and 96-05 with conventional gate valves [2,3,4]. The earlier paper was published within a year after the new design valves were installed at the Pilgrim Nuclear Plant — the plant that took the initiative to form a teaming arrangement as described in [1] which facilitated this innovative development. The current paper documents the successful performance history of 22 years at the Pilgrim plant, as well as performance history at several other nuclear power plants where these valves have been installed for many years in containment isolation service that requires operation under pipe rupture conditions and require tight shut-off in both Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs). The performance history of the new valve has shown to provide significant performance advantage by eliminating the chronic leakage problems and high maintenance costs in these critical service applications. This paper includes a summary of the design, analysis and separate effects testing described in detail in the earlier paper. Flow loop testing was performed on these valves under normal plant operation, various thermal binding and pressure locking scenarios, and accident/pipe rupture conditions. The valve was designed, analyzed and tested to satisfy the requirements of ANSI B16.41 [9]; it also satisfies the requirements of ASME QME 1-2012 [10]. The results of the long-term performance history including any degradation observed and its root cause are summarized in the paper. Paper published with permission.


Author(s):  
Jeffrey C. Poehler ◽  
Gary L. Stevens ◽  
Anees A. Udyawar ◽  
Amy Freed

Abstract ASME Code, Section XI, Nonmandatory Appendix G (ASME-G) provides a methodology for determining pressure and temperature (P-T) limits to prevent non-ductile failure of nuclear reactor pressure vessels (RPVs). Low-Temperature Overpressure Protection (LTOP) refers to systems in nuclear power plants that are designed to prevent inadvertent challenges to the established P-T limits due to operational events such as unexpected mass or temperature additions to the reactor coolant system (RCS). These systems were generally added to commercial nuclear power plants in the 1970s and 1980s to address regulatory concerns related to LTOP events. LTOP systems typically limit the allowable system pressure to below a certain value during plant operation below the LTOP system enabling temperature. Major overpressurization of the RCS, if combined with a critical size crack, could result in a brittle failure of the RPV. Failure of the RPV could make it impossible to provide adequate coolant to the reactor core and result in a major core damage or core melt accident. This issue affected the design and operation of all pressurized water reactors (PWRs). This paper provides a description of an investigation and technical evaluation regarding LTOP setpoints that was performed to review the basis of ASME-G, Paragraph G-2215, “Allowable Pressure,” which includes provisions to address pressure and temperature limitations in the development of P-T curves that incorporate LTOP limits. First, high-level summaries of the LTOP issue and its resolution are provided. LTOP was a significant issue for pressurized water reactors (PWRs) starting in the 1970s, and there are many reports available within the U.S. Nuclear Regulatory Commission’s (NRC’s) documentation system for this topic, including Information Notices, Generic Letters, and NUREGs. Second, a particular aspect of LTOP as related to ASME-G requirements for LTOP is discussed. Lastly, a basis is provided to update Appendix G-2215 to state that LTOP setpoints are based on isothermal (steady-state) conditions. This paper was developed as part of a larger effort to document the technical bases behind ASME-G.


Author(s):  
Claude Faidy

Two major Codes are used for Fitness for Service of Nuclear Power Plants: one is the ASME B&PV Code Section XI and the other one is the French RSE-M Code. Both of them are largely used in many countries, partially or totally. The last 2013 RSE-M covers “Mechanical Components of Pressurized Water Reactors (PWRs): - Pre-service and In-service inspection - Surveillance in operation or during shutdown - Flaw evaluation - Repairs-Replacements parts for plant in operation - Pressure tests The last 2013 ASME Section XI covers “Mechanical components and containment of Light Water Reactors (LWRs)” and has a larger scope with similar topics: more types of plants (PWR and Boiling Water Reactor-BWR), other components like metallic and concrete containments… The paper is a first comparison covering the scope, the jurisdiction, the general organization of each section, the major principles to develop In Service Inspection, Repair-Replacement activities, the flaw evaluation rules, the pressure test requirements, the surveillance procedures (monitoring…) and the connections with Design Codes… These Codes are extremely important for In-service inspection programs in particular and essential tools to justify long term operation of Nuclear Power Plants.


Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 668-672 ◽  
Author(s):  
Pavel Povinec ◽  
Martin Chudý ◽  
Alexander Šivo

14C is one of the most important anthropogenic radionuclides released to the environment by human activities. Weapon testing raised the 14C concentration in the atmosphere and biosphere to +100% above the natural level. This excess of atmospheric C at present decreases with a half-life of ca 7 years. Recently, a new source of artificially produced 14C in nuclear reactors has become important. Since 1967, the Bratislava 14C laboratory has been measuring 14C in atmospheric 14CO2 and in a variety of biospheric samples in densely populated areas and in areas close to nuclear power plants. We have been able to identify a heavy-water reactor and the pressurized water reactors as sources of anthropogenic 14C. 14C concentrations show typical seasonal variations. These data are supported by measurements of 3H and 85Kr in the same locations. Results of calculations of future levels of anthropogenic 14C in the environment due to increasing nuclear reactor installations are presented.


Author(s):  
Robert A. Leishear

An explosion that burst a steel pipe like a paper fire cracker at the Hamaoka Nuclear Power Station, Unit-1 is investigated in this paper, which is one of a series of papers investigating fires and explosions in nuclear power plants. The accumulation of flammable hydrogen and oxygen due to radiolysis has long been recognized as a potential problem in nuclear reactors, where radiolysis is the process that decomposes water into hydrogen and oxygen by radiation exposure in the reactor core. Hydrogen ignition and explosion has long been considered the cause of this Hamaoka piping explosion, but the cause of ignition was considered to be a minor fluid transient, or water hammer, that ignited flammable gasses in the piping, which was made possible by the presence of catalytic noble metals inside the piping. The theory presented here is that a much larger pressure surge occurred due to water hammer during operations. In fact, calculations presented here serve as proof of principle that this explosion mechanism may be present in many operating nuclear power plants. Chubu Electric, the operator of the Hamaoka plant, took appropriate actions to prevent this type of explosion in their plants in the future. In fact, this accident indicates one potential preventive action from explosions for other operating plants. Ensure that a system high point is available, where mixed hydrogen and oxygen may be removed during routine operations and during off-normal accident conditions, such as nuclear reactor meltdowns and loss of coolant accidents.


Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 475-483 ◽  
Author(s):  
Roos Eisma ◽  
Alex T. Vermeulen ◽  
Klaas Van Der Borg

We measured the 14C content of atmospheric methane at a 200-m-high sampling station in The Netherlands. Combined with trajectories and a transport model, it is possible to estimate the 14CH4 emissions from nuclear power plants in northwestern Europe. We demonstrate here two different methods of analyzing the data: forward modeling and an inverse method. Our data suggest that the emissions from pressurized water reactors are 260 ± 50 GBq per GW installed power per year, ca. 1.6 ± 0.4 times higher than generally assumed. We also find that, in addition to the known nuclear sources of 14CH4 (pressurized and boiling water reactors), there are two very strong sources of 14CH4 (520 ± 200 and 1850 ± 450 GBq yr−1, respectively), probably two test reactors near the sampling station.


Sign in / Sign up

Export Citation Format

Share Document