Fatigue Behavior of Metallic Pipes With Through-Wall Corrosion Damage Repaired With Bonded Metallic Patches

Author(s):  
Camila de Luca ◽  
Julia Sathler ◽  
João Fellipe Souza ◽  
Heraldo Mattos

Abstract Composite repair systems have been gaining each time more space in industry, especially when it comes to repairing through-wall defects in pipes. They are simpler to apply, have no costly downtime and provide lower risks to the environment when compared to metallic repairs. ASME PCC-2 and ISO 24817 standards are responsible for defining the parameters necessary to a successful repair, however neither of them addresses a very common practice in such repairs, which is the addition of a bonded metallic patch over the defect. Several companies are adepts of such practice and it has already been proven that is actually the metallic patch and not the composite sleeve itself that sustains most of the load applied on the repair, and for that reason it becomes necessary to conduct further studies regarding the behavior of the patch alone. One important issue is to understand why the strength of similar repairs due to operation errors with very similar amplitude of pressure transients seems to vary randomly, with unexplained early failures. The present paper is concerned with an experimental study about how pressure variations can generate cyclic inelastic strains in the pipe, which can weaken the adhesion between pipe and patch, leading the repair to fail prematurely.

Author(s):  
Colton Sheets ◽  
Robert Rettew ◽  
Chris Alexander ◽  
Denis Baranov ◽  
Patrick Harrell

Over the past two decades, a significant amount of research has been conducted on the use of composite materials for the repair and reinforcement of pipelines. This has led to vast improvements in the quality of composite systems used for pipeline repair and has increased the range of applications for which they are viable solutions (including corrosion and mechanical damage). By using composite repair systems, pipeline operators are often able to restore the structural integrity of damaged pipelines to levels equal to or even in excess of the original undamaged pipe. Although this research has led to substantial advancements in the quality of these repair systems, there are still specific applications where questions remain regarding the strength, durability, and effectiveness of composite repair systems, especially in elevated temperature, harsh environment conditions. This program initially involved composite repair systems from six manufacturers. The test group included both carbon and E-glass based systems. Performance based qualifications were used to reduce the size of the test group from the initial six systems down to three. The experimental study consisted of small-scale testing efforts that ranged from tensile tests performed over a range of temperatures to 10,000-hour material coupon tests at elevated temperatures. The elevated temperatures used for testing were intentionally selected by the operator to reflect the 248 °F design temperature of the target pipeline. Using small-scale qualification testing outlined in ASME PCC-2 – Repair of Pressure Equipment and Piping standard (Article 4.1, Nonmetallic Composite Repair Systems: High-Risk Applications) as a foundation, the test program described in this paper was able to demonstrate that, when properly designed, and installed, some composite materials are able to maintain their effectiveness at high temperatures. This study combined short-term and long-term testing of composite systems and demonstrated the advantages of a 10,000 hour test when aging properties are unknown. Finally, the study showed that, although high-temperature reinforcement using composite repair systems is feasible and commercially available, this capability is not standard practice across the composite repair industry. Proper analysis and verification using experimental methods, including full scale testing should be conducted prior to installation of a composite repair system in these types of harsh conditions.


Author(s):  
Remy Her ◽  
Jacques Renard ◽  
Vincent Gaffard ◽  
Yves Favry ◽  
Paul Wiet

Composite repair systems are used for many years to restore locally the pipe strength where it has been affected by damage such as wall thickness reduction due to corrosion, dent, lamination or cracks. Composite repair systems are commonly qualified, designed and installed according to ASME PCC2 code or ISO 24817 standard requirements. In both of these codes, the Maximum Allowable Working Pressure (MAWP) of the damaged section must be determined to design the composite repair. To do so, codes such as ASME B31G for example for corrosion, are used. The composite repair systems is designed to “bridge the gap” between the MAWP of the damaged pipe and the original design pressure. The main weakness of available approaches is their applicability to combined loading conditions and various types of defects. The objective of this work is to set-up a “universal” methodology to design the composite repair by finite element calculations with directly taking into consideration the loading conditions and the influence of the defect on pipe strength (whatever its geometry and type). First a program of mechanical tests is defined to allow determining all the composite properties necessary to run the finite elements calculations. It consists in compression and tensile tests in various directions to account for the composite anisotropy and of Arcan tests to determine steel to composite interface behaviors in tension and shear. In parallel, a full scale burst test is performed on a repaired pipe section where a local wall thinning is previously machined. For this test, the composite repair was designed according to ISO 24817. Then, a finite element model integrating damaged pipe and composite repair system is built. It allowed simulating the test, comparing the results with experiments and validating damage models implemented to capture the various possible types of failures. In addition, sensitivity analysis considering composite properties variations evidenced by experiments are run. The composite behavior considered in this study is not time dependent. No degradation of the composite material strength due to ageing is taking into account. The roadmap for the next steps of this work is to clearly identify the ageing mechanisms, to perform tests in relevant conditions and to introduce ageing effects in the design process (and in particular in the composite constitutive laws).


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1008
Author(s):  
Francesco Musiari ◽  
Fabrizio Moroni

The low quality of adhesion performance on polymeric surfaces has forced the development of specific pretreatments able to toughen the interface between substrate and adhesive. Among these methods, atmospheric pressure plasma treatment (APPT) appears particularly suitable for its environmental compatibility and its effectiveness in altering the chemical state of the surface. In this work, an experimental study on adhesively bonded joints realized using polyamide as substrates and polyurethane as the structural adhesive was carried out with the intent to characterize their fatigue behavior, which represents a key issue of such joints during their working life. The single lap joint (SLJ) geometry was chosen and several surface pretreatments were compared with each other: degreasing, abrasion (alone and followed by APPT) and finally APPT. The results show that the abrasion combined with APPT presents the most promising behavior, which appears consistent with the higher percentage of life spent for crack propagation found by means of DIC on this class of joints with respect to the others. APPT alone confers a good fatigue resistance with respect to the simple abrasion, especially at a low number of cycles to failure.


Author(s):  
Chris Alexander

Although composite materials are used to repair and reinforce a variety of anomalies in high pressure transmission gas and liquid pipelines, there continues to be widespread debate regarding what constitutes a long-term composite repair. The United States regulations require that composite repairs must be able to permanently restore the serviceability of the repaired pipeline, while in contrast the Canadian regulations take a more prescriptive approach by integrating the ASME PCC-2 and ISO 24817 composite repair standards along with a requirement for establishing a 50-year design life. In this paper the author provides a framework for what should be considered in qualifying a composite repair system for long-term performance by focusing on the critical technical aspects associated with a sound composite repair. The presentation includes a discussion on establishing an appropriate composite design stress using the existing standards, using full-scale testing to ensure that stresses in the repair do not exceed the designated composite design stresses, and guidance for operators in how to properly integrate their pipeline operating conditions to establish a design life. By implementing the recommendations presented in this paper, operators will be equipped with a resource for objectively evaluating the composite repair systems used to repair their pipeline systems.


2014 ◽  
Vol 53 ◽  
pp. 200-213 ◽  
Author(s):  
Mladena Luković ◽  
Hua Dong ◽  
Branko Šavija ◽  
Erik Schlangen ◽  
Guang Ye ◽  
...  

Author(s):  
Khalid Farrag ◽  
Kevin Stutenberg

The long-term performance of composite repair systems depends on their structural integrity and interaction with the carrier pipe. The adhesives used in the composites are critical components that not only bond the repair to the pipe, but also bond the individual layers of the repair to one another. The durability of the inter-laminate adhesive bond is required to ensure adequate load transfer between the pipe and the composite layers over the predicted lifetime of the repair. A testing program was performed to evaluate the shear strength of the adhesives used in composite repairs. The testing program evaluated the performance of seven commercially-available composite repair systems and it consisted of short-term and long-term shear tests on the adhesives and cathodic disbondment tests on the repair systems. The long-term shear tests were performed for 10,000 hours on samples submerged in a water solution with pH value of 9 and at various loading levels at temperatures of 70°F, 105°F and 140°F. The results of the long-term tests at elevated temperatures were extrapolated to predict the shear strengths at longer durations. The 20-year shear strengths of the composites were estimated using: (a) direct extrapolation of the best-fit curves and (b) the application of the rate process procedure. The results demonstrated the significant effect of temperature on the bond strength of the composites and provided a comparative analysis to evaluate the long-term shear strength and cathodic disbondment of the composite repair systems.


Author(s):  
Gh. Zecheru ◽  
Andrei Dumitrescu ◽  
A. Diniţă ◽  
P. Yukhymets

Sign in / Sign up

Export Citation Format

Share Document