Modeling and Control of a Continuously Variable Planetary Transmission for a Small Wind Turbine Drivetrain

Author(s):  
Zhi Yang ◽  
Mahesh Krishnamurthy ◽  
Jose M. Garcia

This paper presents the modeling and control of a Continuously Variable Planetary (CVP) transmission in a wind turbine system. The primary purpose of this paper is to evaluate its effectiveness for mechanically decoupling the variable speed turbine rotor from the grid tied induction generator. It is expected that a CVP controlled wind turbine can take advantage of the grid tied induction generator without the use of an inverter, while optimizing the blade speed aerodynamically. This system also expands its operating range making it possible to track the optimal tip speed ratio over a wider wind speed range, which allows higher power to be captured from the wind. System characteristics have been studied by simulating an 8kW horizontal axis wind turbine in a MatLab/Simulink® environment. Experimental results have been included to verify the model of the system. Analyses conducted show that the continuously variable transmissions are potential candidates for small wind turbine applications.

Author(s):  
Scott Dana ◽  
Joseph Yutzy ◽  
Douglas E. Adams

One of the primary challenges in diagnostic health monitoring and control of wind turbines is compensating for the variable nature of wind loads. Given the sometimes large variations in wind speed, direction, and other operational variables (like wind shear), this paper proposes a data-driven, online rotor model identification approach. A 2 m diameter horizontal axis wind turbine rotor is first tested using experimental modal analysis techniques. Through the use of the Complex Mode Indication Function, the dominant natural frequencies and mode shapes of dynamic response of the rotor are estimated (including repeated and pseudo-repeated roots). The free dynamic response properties of the stationary rotor are compared to the forced response of the operational rotor while it is being subjected to wind and rotordynamic loads. It is demonstrated that both narrowband (rotordynamic) and broadband (wind driven) responses are amplified near resonant frequencies of the rotor. Blade loads in the flap direction of the rotor are also estimated through matrix inversion for a simulated set of rotor blade input forces and for the operational loading state of the wind turbine in a steady state condition. The analytical estimates are shown to be accurate at frequencies for which the ordinary coherence functions are near unity. The loads in operation are shown to be largest at points mid-way along the span of the blade and on one of the three blades suggesting this method could be used for usage monitoring. Based on these results, it is proposed that a measurement of upstream wind velocity will provide enhanced models for diagnostics and control by providing a leading indicator of disturbances in the loads.


2020 ◽  
Author(s):  
Rodrigo Soto-Valle ◽  
Sirko Bartholomay ◽  
Joerg Alber ◽  
Marinos Manolesos ◽  
Christian Navid Nayeri ◽  
...  

Abstract. In this paper, a method to determine the angle of attack on a wind turbine rotor blade using a chordwise pressure distribution measurement was applied. The approach uses a reduced number of pressure taps data located close to the blade leading edge. The results were compared with three 3-hole probes located at different radial positions and analytical calculations. The experimental approaches are based on the 2-D flow assumption; the pressure tap method is an application of the thin airfoil theory and the 3-hole probe method uses external probe measurements and applies geometrical and induction corrections. The experiments were conducted in the wind tunnel at the Hermann Föttinger Institut of the Technische Unversität Berlin. The research turbine is a three-bladed upwind horizontal axis wind turbine model with a rotor diameter of 3 m. The measurements were carried out at rated condition with a tip speed ratio of 4.35 and different yaw and pitch angles were tested in order to compare both methods over a wide range of conditions. Results show that the pressure taps method is suitable with a similar angle of attack results as the 3-hole probes for the aligned case. When a yaw misalignment was introduced the method captures the same trend and feature of the analytical estimations. Nevertheless, it is not able to capture the tower influence. Regarding the influence of pitching the blades, a linear relationship between the angle of attack and pitch angle was found.


2010 ◽  
Vol 18 (9) ◽  
pp. 1365-1381 ◽  
Author(s):  
Adrià Junyent-Ferré ◽  
Oriol Gomis-Bellmunt ◽  
Andreas Sumper ◽  
Marc Sala ◽  
Montserrat Mata

Sign in / Sign up

Export Citation Format

Share Document