scholarly journals Numerical Study of Influence of Fluid Distribution over Heat Storage into Porous Media

Author(s):  
Grégoire Bellenot ◽  
Fabrice Bentivoglio ◽  
Philippe Marty
2016 ◽  
Vol 19 (11) ◽  
pp. 941-953 ◽  
Author(s):  
Pablo Donoso-Garcia ◽  
Luis Henriquez-Vargas

2017 ◽  
Vol 10 (1) ◽  
pp. 13-22
Author(s):  
Renyi Cao ◽  
Junjie Xu ◽  
Xiaoping Yang ◽  
Renkai Jiang ◽  
Changchao Chen

During oilfield development, there exist multi-cycle gas–water mutual displacement processes. This means that a cycling process such as water driving gas–gas driving water–water driving gas is used for the operation of injection and production in a single well (such as foam huff and puff in single well or water-bearing gas storage). In this paper, by using core- and micro-pore scales model, we study the distribution of gas and water and the flow process of gas-water mutual displacement. We find that gas and water are easier to disperse in the porous media and do not flow in continuous gas and water phases. The Jamin effect of the gas or bubble becomes more severe and makes the flow mechanism of multi-cycle gas–water displacement different from the conventional water driving gas or gas driving water processes. Based on experiments of gas–water mutual displacement, the changing mechanism of gas–water displacement is determined. The results indicate that (1) after gas–water mutual displacement, the residual gas saturation of a gas–water coexistence zone becomes larger and the two-phase zone becomes narrower, (2) increasing the number of injection and production cycles causes the relative permeability of gas to increase and relative permeability for water to decrease, (3) it becomes easier for gas to intrude and the invaded water becomes more difficult to drive out and (4) the microcosmic fluid distribution of each stage have a great difference, which caused the two-phase region becomes narrower and effective volume of gas storage becomes narrower.


Energy ◽  
2022 ◽  
Vol 238 ◽  
pp. 121831
Author(s):  
Mohammadmehdi Namazi ◽  
Mohammadreza Nayebi ◽  
Amin Isazadeh ◽  
Ali Modarresi ◽  
Iman Ghasemi Marzbali ◽  
...  

2011 ◽  
Vol 54 (9) ◽  
pp. 2412-2420 ◽  
Author(s):  
ZhaoQin Huang ◽  
Jun Yao ◽  
YueYing Wang ◽  
Ke Tao

2013 ◽  
Vol 58 (1-2) ◽  
pp. 542-553 ◽  
Author(s):  
Wei-Wei Wang ◽  
Kun Zhang ◽  
Liang-Bi Wang ◽  
Ya-Ling He

2012 ◽  
Author(s):  
Tomoya Oshima ◽  
Shigeru Yonemura ◽  
Takashi Tokumasu

2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 467-475 ◽  
Author(s):  
Habib-Olah Sayehvand ◽  
Sakene Yari ◽  
Parsa Basiri

Staggered arrangement is one of the common configurations in heat exchangers that make better mixing of flow and heat transfer augmentation than other arrangements. In this paper forced convection heat transfer over three isothermal circular cylinders in staggered configuration in isotropic packed bed was investigated. In this work laminar 2-D incompressible steady-state equations of momentum and energy were solved numerically by finite volume method. Simulation was done in three Reynolds numbers of 80, 120, and 200. The results indicate that, using porous medium the Nusselt number enhanced considerably for any of cylinders and it presents thin temperature contours for them. Also is shown that by increasing Reynolds number, the heat transfer increased in both channel but the growth rate of it in porous media is larger. In addition, results of simulation in porous channel show that with increasing Peclet number, heat transfer increased logarithmically.


Sign in / Sign up

Export Citation Format

Share Document