scholarly journals Numerical Investigations of Heat Transfer Performance of Nanofluids in a Flat Plate Solar Collector

Author(s):  
E. Ekramian ◽  
S. Gh. Etemad ◽  
M. Haghshenasfard
2014 ◽  
Vol 90 ◽  
pp. 364-370 ◽  
Author(s):  
Rehena Nasrin ◽  
Salma Parvin ◽  
M.A. Alim

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1508
Author(s):  
Nagesh Babu Balam ◽  
Tabish Alam ◽  
Akhilesh Gupta ◽  
Paolo Blecich

The natural convection flow in the air gap between the absorber plate and glass cover of the flat plate solar collectors is predominantly evaluated based on the lumped capacitance method, which does not consider the spatial temperature gradients. With the recent advancements in the field of computational fluid dynamics, it became possible to study the natural convection heat transfer in the air gap of solar collectors with spatially resolved temperature gradients in the laminar regime. However, due to the relatively large temperature gradient in this air gap, the natural convection heat transfer lies in either the transitional regime or in the turbulent regime. This requires a very high grid density and a large convergence time for existing CFD methods. Higher order numerical methods are found to be effective for resolving turbulent flow phenomenon. Here we develop a non-dimensional transient numerical model for resolving the turbulent natural convection heat transfer in the air gap of a flat plate solar collector, which is fourth order accurate in both spatial and temporal domains. The developed model is validated against benchmark results available in the literature. An error of less than 5% is observed for the top heat loss coefficient parameter of the flat plate solar collector. Transient flow characteristics and various stages of natural convection flow development have been discussed. In addition, it was observed that the occurrence of flow mode transitions have a significant effect on the overall natural convection heat transfer.


2014 ◽  
Vol 984-985 ◽  
pp. 1125-1131
Author(s):  
G. Vijayan ◽  
S. Giridharan ◽  
R. Karunakaran

Heat transfer improvement in solar operated devices is one of the key issues of energy saving and compact designs. Researches in heat transfer have been carried out over the past several decades, culminating in the development of the heat transfer techniques used at present. The use of additives is a technique employed to enhance the heat transfer performance of base fluids. Recently, an innovative material, nanosized particle has been used in suspension in conventional heat transfer fluids that changes the heat transfer characteristic. In this project, an attempt has been made to verify change in heat transfer behavior while using nanofluids. For this purpose, a conical solar collector has been designed, constructed using locally available sheet steel. Polyurethane foam material is used as a insulating liner inside the cone. Thin reflective aluminum sheet is used to focus the solar radiation onto the absorbing surface. The main objective of this paper is to study the heat transfer behavior of Al2O3, Cu2O and ZnO nanofluid and especially Al2O3nanofluid of various concentrations in absorber space of conical solar collector. Experimental study was conducted on different days and the data were recorded. The results obtained show that addition of nanoparticles in the base fluid, improve the heat transfer rate.


Sign in / Sign up

Export Citation Format

Share Document