heat transfer behavior
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 59)

H-INDEX

23
(FIVE YEARS 7)

Author(s):  
Mark Anderson ◽  
Justin Costa-Greger ◽  
Aaron Ediger ◽  
Craig Zuhlke ◽  
Dennis Alexander ◽  
...  

2021 ◽  
Vol 15 (3) ◽  
pp. 8364-8378
Author(s):  
SADMAN HASSAN LABIB ◽  
M. R. A. Himel ◽  
J.I. Ali ◽  
A.R. Mim ◽  
M.J. Hossain ◽  
...  

Experimental and numerical analyses are carried out to investigate the influence of twisted tape inserts on the heat transfer and the flow behavior in double tube heat exchangers. First, all the performance factors, namely the Nusselt number, friction factor, and thermal performance factor, were studied for a basic heat exchanger (BHE). Afterwards, twisted tapes with three different twist ratios (7.5, 6, and 4.5) were inserted inside the inner tube of the BHE, which resulted in three different modified heat exchangers (MHEs). For the numerical study, a 3D numerical model is developed with the k-ε RNG turbulent model to visualize the flow and the heat transfer behavior inside the heat exchangers. In both studies, turbulent flow field is maintained, ranging Reynolds number from 15000 to 50000.  From the experimental result, an enhanced heat transfer, characterized by the performance factors, is found for all the MHEs compared to the BHE. The most enhanced thermal performance factor is achieved for the MHE with the lowest twist ratio. Finally, a good agreement between obtained numerical and experimental results reveals that the present numerical model can reliably predict the flow and heat transfer behavior in double tube heat exchangers.


Author(s):  
Ning Fan ◽  
Baiqing Xiong ◽  
Zhihui Li ◽  
Yanan Li ◽  
Xiwu Li ◽  
...  

Abstract The desired microstructure and mechanical properties of heat treatable 7xxx aluminum alloy can be achieved after spray quenching by controlling spray parameters. However, heat transfer behavior between specimen and quenchant is transient and complicated in quenching process. In this paper, a spray quenching system was utilized to quench for 7xxx aluminum alloy. The influence of spray parameters, including spray pressure and spray distance, on heat transfer behavior was examined and discussed. Heat flux and heat transfer coefficient were calculated by iterative method. The results indicated that the aluminum alloy experienced transition boiling, nucleate boiling and convection cooling regimes during spray quenching process. Heat transfer capability firstly increased and then decreased with the increasing of spray pressure or spray distance. A function of local heat transfer coefficient which is variable in specimen surface temperature, spray parameters and spatial location was constructed. Residual stress of 7xxx aluminum alloy plates was increased firstly and then slightly differed with the increase of volumetric flux.


Sign in / Sign up

Export Citation Format

Share Document