High emission current double-gated field emitter arrays

Author(s):  
Akihiko Hosono ◽  
Shinji Kawabuchi ◽  
Shinji Horibata ◽  
Soichiro Okuda ◽  
Hiroshi Harada ◽  
...  
Author(s):  
Jae-Hoon Lee ◽  
Myoung-Bok Lee ◽  
Sung-Ho Hahm ◽  
Jung-Hee Lee ◽  
Hwa-Il Seo ◽  
...  

2010 ◽  
Vol 97 (11) ◽  
pp. 113107 ◽  
Author(s):  
Chi Li ◽  
Yan Zhang ◽  
Mark Mann ◽  
David Hasko ◽  
Wei Lei ◽  
...  

1998 ◽  
Vol 509 ◽  
Author(s):  
Moo-Sup Lim ◽  
Cheol-Min Park ◽  
Min-Koo Han ◽  
Yearn-Ik Choi

AbstarctWe have fabricated a new three-terminal lateral field emitter structure in which the anode current is limited by the channel current of undoped region. The new device exhibits an excellent stability of the emission current. The field emission characteristics of fabricated device have two modes. In the first mode below 89 V, the mechanism of emission is identical to that of conventional poly-Si emitters and, in the second mode above 89 V, the emission current is limited by the inversion charges in the channel, so stable anode current is maintained. Furthermore, the fabrication process of the device is very simple.


2001 ◽  
Vol 1 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Jung Inn Sohn ◽  
Seonghoon Lee ◽  
Yoon-Ho Song ◽  
Sung-Yool Choi ◽  
Kyoung-Ik Cho ◽  
...  

Author(s):  
Jiang Liu ◽  
John J. Hren

Arrays of nanometer-scale field emitters have recently become attractive candidates for device applications where high frequency and high current are desirable attributes. High emission current can be obtained from densely packed Spindt-type emitter arrays with very low extraction voltage. Concern with the optimum geometrical shape of each emitter and the fraction of active emitters, makes a combined study of field emission and scanning electron microscopy especially useful.Several geometrical structures, as well as several materials, have been used to fabricate the field emitter arrays. The present study concentrates on silicon-base emitters fabricated at the Microelectronics Center of North Carolina (MCNC). Each emitter has a pyramidal structure, fabricated by anisotropic chemical etching of highly doped (ND = 1017 cm−3) n-type silicon. Figure 1 shows a SEM micrograph of a typical Si field emitter with a radius of curvature less than 30 nm. The field required for electron emission, about 3 × 107 V/cm, is created by a relatively low voltage applied to the extraction gate, a metal film less than one micron distant and deposited over a dielectric layer of silicon oxide (Figures 2 and 3).


Sign in / Sign up

Export Citation Format

Share Document