scholarly journals Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K

2021 ◽  
Vol 3 (06) ◽  
Author(s):  
Christian Schimpf ◽  
Santanu Manna ◽  
Saimon F. Covre da Silva ◽  
Maximilian Aigner ◽  
Armando Rastelli
Author(s):  
Tobias Heindel ◽  
Markus Rau ◽  
Sebastian Unsleber ◽  
Tristan Braun ◽  
Julian Fischer ◽  
...  

2007 ◽  
Vol 91 (19) ◽  
pp. 199901 ◽  
Author(s):  
P. M. Intallura ◽  
M. B. Ward ◽  
O. Z. Karimov ◽  
Z. L. Yuan ◽  
P. See ◽  
...  

2021 ◽  
Author(s):  
Christopher L. Morrison ◽  
Francesco Graffitti ◽  
Zhe Xian Koong ◽  
Nick G. Stoltz ◽  
Dirk Bouwmeester ◽  
...  

2007 ◽  
Vol 91 (16) ◽  
pp. 161103 ◽  
Author(s):  
P. M. Intallura ◽  
M. B. Ward ◽  
O. Z. Karimov ◽  
Z. L. Yuan ◽  
P. See ◽  
...  

2014 ◽  
Vol 16 (4) ◽  
pp. 043003 ◽  
Author(s):  
Markus Rau ◽  
Tobias Heindel ◽  
Sebastian Unsleber ◽  
Tristan Braun ◽  
Julian Fischer ◽  
...  

2012 ◽  
Vol 14 (8) ◽  
pp. 083001 ◽  
Author(s):  
Tobias Heindel ◽  
Christian A Kessler ◽  
Markus Rau ◽  
Christian Schneider ◽  
Martin Fürst ◽  
...  

2021 ◽  
Vol 7 (12) ◽  
pp. eabe6379
Author(s):  
Francesco Basso Basset ◽  
Mauro Valeri ◽  
Emanuele Roccia ◽  
Valerio Muredda ◽  
Davide Poderini ◽  
...  

Quantum key distribution—exchanging a random secret key relying on a quantum mechanical resource—is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication.


Sign in / Sign up

Export Citation Format

Share Document