scholarly journals Objective color calibration for manufacturing facial prostheses

2021 ◽  
Vol 26 (02) ◽  
Author(s):  
Yargo V. Tessaro ◽  
Sérgio S. Furuie ◽  
Denise M. Nakamura
2020 ◽  
Vol 2020 (1) ◽  
pp. 100-104
Author(s):  
Hakki Can Karaimer ◽  
Rang Nguyen

Colorimetric calibration computes the necessary color space transformation to map a camera's device-specific color space to a device-independent perceptual color space. Color calibration is most commonly performed by imaging a color rendition chart with a fixed number of color patches with known colorimetric values (e. g., CIE XYZ values). The color space transformation is estimated based on the correspondences between the camera's image and the chart's colors. We present a new approach to colorimetric calibration that does not require explicit color correspondences. Our approach computes a color space transformation by aligning the color distributions of the captured image to the known distribution of a calibration chart containing thousands of colors. We show that a histogram-based colorimetric calibration approach provides results that are onpar with the traditional patch-based method without the need to establish correspondences.


2009 ◽  
Vol 29 (4) ◽  
pp. 982-986
Author(s):  
Jun ZHANG ◽  
Bang-ping WANG ◽  
Cheng YI ◽  
Xiao-feng LI ◽  
Hui LI

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Selam Yekta Sendul ◽  
Aysegul Mavi Yildiz ◽  
Ali Atakhan Yildiz ◽  
Emine Akbas

2017 ◽  
Vol 4 (2) ◽  
pp. 320-329 ◽  
Author(s):  
Yuji Waizumi ◽  
Masako Omachi ◽  
Kazuyuki Tanaka

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Li-fen Tu ◽  
Qi Peng ◽  
Chun-sheng Li ◽  
Aiqun Zhang

In order to measure the plant leaf area conveniently and quickly in an indoor laboratory and outdoor field, a set of scaffold leaf area measurement systems was designed and manufactured. A 2D in situ method for measuring plant leaf area with camera correction and background color calibration was proposed. The method integrates three subalgorithms: fast calibration and distortion correction algorithm, background color calibration algorithm, and edge error correction algorithm. At the same time, the Visual Studio 2015 and OpenCV 3.4.0 were used to develop and test the algorithm. In order to verify the measurement speed and environmental adaptability of the system, the test was carried out in the complex light disturbance outdoors, and the results were consistent with those in the room. In order to verify the measurement accuracy of the system, this method was used to measure the standard rectangular gauge block of known area and the real leaf area, respectively, and its data were compared with the data measured by Wanshen LA-S plant image analyzer. The results show that both methods have a good stability, and the algorithm proposed in this paper performs better in measurement accuracy and environmental adaptability.


2003 ◽  
Vol 12 (4) ◽  
Author(s):  
Jens Knude ◽  
Claus Fabricius

AbstractWe present a new color index vs. absolute magnitude calibration of 2MASS JHK photometry. For the A0 to ~G5 and M segments of the main sequence information on the amount of interstellar extinction and its location in space may be obtained.


2019 ◽  
Vol 627 ◽  
pp. A115 ◽  
Author(s):  
M. Rigault ◽  
J. D. Neill ◽  
N. Blagorodnova ◽  
A. Dugas ◽  
M. Feeney ◽  
...  

Current time domain facilities are discovering hundreds of new galactic and extra-galactic transients every week. Classifying the ever-increasing number of transients is challenging, yet crucial to furthering our understanding of their nature, discovering new classes, and ensuring sample purity, for instance, for Supernova Ia cosmology. The Zwicky Transient Facility is one example of such a survey. In addition, it has a dedicated very-low resolution spectrograph, the SEDMachine, operating on the Palomar 60-inch telescope. This spectrograph’s primary aim is object classification. In practice most, if not all, transients of interest brighter than ∼19 mag are typed. This corresponds to approximately 10–15 targets a night. In this paper, we present a fully automated pipeline for the SEDMachine. This pipeline has been designed to be fast, robust, stable and extremely flexible. pysedm enables the fully automated spectral extraction of a targeted point source object in less than five minutes after the end of the exposure. The spectral color calibration is accurate at the few percent level. In the 19 weeks since pysedm entered production in early August of 2018, we have classified, among other objects, about 400 Type Ia supernovae and 140 Type II supernovae. We conclude that low resolution, fully automated spectrographs such as the “SEDMachine with pysedm” installed on 2-m class telescopes within the southern hemisphere could allow us to automatically and simultaneously type and obtain a redshift for most (if not all) bright transients detected by LSST within z <  0.2, notably potentially all Type Ia Supernovae. In comparison with the current SEDM design, this would require higher spectral resolution (R ≳ 1000) and slightly improved throughput. With this perspective in mind, pysedm is designed to easily be adaptable to any IFU-like spectrograph.


Sign in / Sign up

Export Citation Format

Share Document