Neural network-based approach for estimation of downwelling longwave radiation flux under cloudy-sky conditions

2021 ◽  
Vol 15 (02) ◽  
Author(s):  
Dhwanilnath Gharekhan ◽  
Bimal K. Bhattacharya ◽  
Devansh Desai ◽  
Parul R. Patel
2019 ◽  
Vol 32 (22) ◽  
pp. 7935-7949 ◽  
Author(s):  
Israel Silber ◽  
Johannes Verlinde ◽  
Sheng-Hung Wang ◽  
David H. Bromwich ◽  
Ann M. Fridlind ◽  
...  

Abstract The surface downwelling longwave radiation component (LW↓) is crucial for the determination of the surface energy budget and has significant implications for the resilience of ice surfaces in the polar regions. Accurate model evaluation of this radiation component requires knowledge about the phase, vertical distribution, and associated temperature of water in the atmosphere, all of which control the LW↓ signal measured at the surface. In this study, we examine the LW↓ model errors found in the Antarctic Mesoscale Prediction System (AMPS) operational forecast model and the ERA5 model relative to observations from the ARM West Antarctic Radiation Experiment (AWARE) campaign at McMurdo Station and the West Antarctic Ice Sheet (WAIS) Divide. The errors are calculated separately for observed clear-sky conditions, ice-cloud occurrences, and liquid-bearing cloud-layer (LBCL) occurrences. The analysis results show a tendency in both models at each site to underestimate the LW↓ during clear-sky conditions, high error variability (standard deviations > 20 W m−2) during any type of cloud occurrence, and negative LW↓ biases when LBCLs are observed (bias magnitudes >15 W m−2 in tenuous LBCL cases and >43 W m−2 in optically thick/opaque LBCLs instances). We suggest that a generally dry and liquid-deficient atmosphere responsible for the identified LW↓ biases in both models is the result of excessive ice formation and growth, which could stem from the model initial and lateral boundary conditions, microphysics scheme, aerosol representation, and/or limited vertical resolution.


2021 ◽  
Author(s):  
Gitanjali Thakur ◽  
Stan Schymanski ◽  
Kaniska Mallick ◽  
Ivonne Trebs

<p>The surface energy balance (SEB) is defined as the balance between incoming energy from the sun and outgoing energy from the Earth’s surface. All components of the SEB depend on land surface temperature (LST). Therefore, LST is an important state variable that controls the energy and water exchange between the Earth’s surface and the atmosphere. LST can be estimated radiometrically, based on the infrared radiance emanating from the surface. At the landscape scale, LST is derived from thermal radiation measured using  satellites.  At the plot scale, eddy covariance flux towers commonly record downwelling and upwelling longwave radiation, which can be inverted to retrieve LST  using the grey body equation :<br>             R<sub>lup</sub> = εσ T<sub>s</sub><sup>4</sup> + (1 − ε) R<sub> ldw         </sub>(1)<br>where R<sub>lup</sub> is the upwelling longwave radiation, R<sub>ldw</sub> is the downwelling longwave radiation, ε is the surface emissivity, <em>T<sub>s</sub>  </em>is the surface temperature and σ  is the Stefan-Boltzmann constant. The first term is the temperature-dependent part, while the second represents reflected longwave radiation. Since in the past downwelling longwave radiation was not measured routinely using flux towers, it is an established practice to only use upwelling longwave radiation for the retrieval of plot-scale LST, essentially neglecting the reflected part and shortening Eq. 1 to:<br>               R<sub>lup</sub> = εσ T<sub>s</sub><sup>4 </sup>                       (2)<br>Despite  widespread availability of downwelling longwave radiation measurements, it is still common to use the short equation (Eq. 2) for in-situ LST retrieval. This prompts the question if ignoring the downwelling longwave radiation introduces a bias in LST estimations from tower measurements. Another associated question is how to obtain the correct ε needed for in-situ LST retrievals using tower-based measurements.<br>The current work addresses these two important science questions using observed fluxes at eddy covariance towers for different land cover types. Additionally, uncertainty in retrieved LST and emissivity due to uncertainty in input fluxes was quantified using SOBOL-based uncertainty analysis (SALib). Using landscape-scale emissivity obtained from satellite data (MODIS), we found that the LST  obtained using the complete equation (Eq. 1) is 0.5 to 1.5 K lower than the short equation (Eq. 2). Also, plot-scale emissivity was estimated using observed sensible heat flux and surface-air temperature differences. Plot-scale emissivity obtained using the complete equation was generally between 0.8 to 0.98 while the short equation gave values between 0.9 to 0.98, for all land cover types. Despite additional input data for the complete equation, the uncertainty in plot-scale LST was not greater than if the short equation was used. Landscape-scale daytime LST obtained from satellite data (MODIS TERRA) were strongly correlated with our plot-scale estimates, but on average higher by 0.5 to 9 K, regardless of the equation used. However, for most sites, the correspondence between MODIS TERRA LST and retrieved plot-scale LST estimates increased significantly if plot-scale emissivity was used instead of the landscape-scale emissivity obtained from satellite data.</p>


2021 ◽  
Vol 13 (19) ◽  
pp. 3859
Author(s):  
Joby M. Prince Czarnecki ◽  
Sathishkumar Samiappan ◽  
Meilun Zhou ◽  
Cary Daniel McCraine ◽  
Louis L. Wasson

The radiometric quality of remotely sensed imagery is crucial for precision agriculture applications because estimations of plant health rely on the underlying quality. Sky conditions, and specifically shadowing from clouds, are critical determinants in the quality of images that can be obtained from low-altitude sensing platforms. In this work, we first compare common deep learning approaches to classify sky conditions with regard to cloud shadows in agricultural fields using a visible spectrum camera. We then develop an artificial-intelligence-based edge computing system to fully automate the classification process. Training data consisting of 100 oblique angle images of the sky were provided to a convolutional neural network and two deep residual neural networks (ResNet18 and ResNet34) to facilitate learning two classes, namely (1) good image quality expected, and (2) degraded image quality expected. The expectation of quality stemmed from the sky condition (i.e., density, coverage, and thickness of clouds) present at the time of the image capture. These networks were tested using a set of 13,000 images. Our results demonstrated that ResNet18 and ResNet34 classifiers produced better classification accuracy when compared to a convolutional neural network classifier. The best overall accuracy was obtained by ResNet34, which was 92% accurate, with a Kappa statistic of 0.77. These results demonstrate a low-cost solution to quality control for future autonomous farming systems that will operate without human intervention and supervision.


2019 ◽  
Vol 46 (5) ◽  
pp. 2781-2789 ◽  
Author(s):  
L. R. Vargas Zeppetello ◽  
A. Donohoe ◽  
D. S. Battisti

2014 ◽  
Vol 35 (9) ◽  
pp. 2339-2351 ◽  
Author(s):  
R. L. Raddatz ◽  
T. N. Papakyriakou ◽  
B. G. Else ◽  
M. G. Asplin ◽  
L. M. Candlish ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document