Plot-scale retrieval of land surface temperature and emissivity estimation

Author(s):  
Gitanjali Thakur ◽  
Stan Schymanski ◽  
Kaniska Mallick ◽  
Ivonne Trebs

<p>The surface energy balance (SEB) is defined as the balance between incoming energy from the sun and outgoing energy from the Earth’s surface. All components of the SEB depend on land surface temperature (LST). Therefore, LST is an important state variable that controls the energy and water exchange between the Earth’s surface and the atmosphere. LST can be estimated radiometrically, based on the infrared radiance emanating from the surface. At the landscape scale, LST is derived from thermal radiation measured using  satellites.  At the plot scale, eddy covariance flux towers commonly record downwelling and upwelling longwave radiation, which can be inverted to retrieve LST  using the grey body equation :<br>             R<sub>lup</sub> = εσ T<sub>s</sub><sup>4</sup> + (1 − ε) R<sub> ldw         </sub>(1)<br>where R<sub>lup</sub> is the upwelling longwave radiation, R<sub>ldw</sub> is the downwelling longwave radiation, ε is the surface emissivity, <em>T<sub>s</sub>  </em>is the surface temperature and σ  is the Stefan-Boltzmann constant. The first term is the temperature-dependent part, while the second represents reflected longwave radiation. Since in the past downwelling longwave radiation was not measured routinely using flux towers, it is an established practice to only use upwelling longwave radiation for the retrieval of plot-scale LST, essentially neglecting the reflected part and shortening Eq. 1 to:<br>               R<sub>lup</sub> = εσ T<sub>s</sub><sup>4 </sup>                       (2)<br>Despite  widespread availability of downwelling longwave radiation measurements, it is still common to use the short equation (Eq. 2) for in-situ LST retrieval. This prompts the question if ignoring the downwelling longwave radiation introduces a bias in LST estimations from tower measurements. Another associated question is how to obtain the correct ε needed for in-situ LST retrievals using tower-based measurements.<br>The current work addresses these two important science questions using observed fluxes at eddy covariance towers for different land cover types. Additionally, uncertainty in retrieved LST and emissivity due to uncertainty in input fluxes was quantified using SOBOL-based uncertainty analysis (SALib). Using landscape-scale emissivity obtained from satellite data (MODIS), we found that the LST  obtained using the complete equation (Eq. 1) is 0.5 to 1.5 K lower than the short equation (Eq. 2). Also, plot-scale emissivity was estimated using observed sensible heat flux and surface-air temperature differences. Plot-scale emissivity obtained using the complete equation was generally between 0.8 to 0.98 while the short equation gave values between 0.9 to 0.98, for all land cover types. Despite additional input data for the complete equation, the uncertainty in plot-scale LST was not greater than if the short equation was used. Landscape-scale daytime LST obtained from satellite data (MODIS TERRA) were strongly correlated with our plot-scale estimates, but on average higher by 0.5 to 9 K, regardless of the equation used. However, for most sites, the correspondence between MODIS TERRA LST and retrieved plot-scale LST estimates increased significantly if plot-scale emissivity was used instead of the landscape-scale emissivity obtained from satellite data.</p>

2019 ◽  
Vol 11 (5) ◽  
pp. 479 ◽  
Author(s):  
Maria Martin ◽  
Darren Ghent ◽  
Ana Pires ◽  
Frank-Michael Göttsche ◽  
Jan Cermak ◽  
...  

Global land surface temperature (LST) data derived from satellite-based infrared radiance measurements are highly valuable for various applications in climate research. While in situ validation of satellite LST data sets is a challenging task, it is needed to obtain quantitative information on their accuracy. In the standardised approach to multi-sensor validation presented here for the first time, LST data sets obtained with state-of-the-art retrieval algorithms from several sensors (AATSR, GOES, MODIS, and SEVIRI) are matched spatially and temporally with multiple years of in situ data from globally distributed stations representing various land cover types in a consistent manner. Commonality of treatment is essential for the approach: all satellite data sets are projected to the same spatial grid, and transformed into a common harmonized format, thereby allowing comparison with in situ data to be undertaken with the same methodology and data processing. The large data base of standardised satellite LST provided by the European Space Agency’s GlobTemperature project makes previously difficult to perform LST studies and applications more feasible and easier to implement. The satellite data sets are validated over either three or ten years, depending on data availability. Average accuracies over the whole time span are generally within ±2.0 K during night, and within ± 4.0 K during day. Time series analyses over individual stations reveal seasonal cycles. They stem, depending on the station, from surface anisotropy, topography, or heterogeneous land cover. The results demonstrate the maturity of the LST products, but also highlight the need to carefully consider their temporal and spatial properties when using them for scientific purposes.


Author(s):  
Ravi Kumar ◽  
Anup Kumar

Land surface temperature (LST) represents hotness of the surface of the Earth at a particular location. Land surface temperature is useful for meteorological, climatological changes, heat island, agriculture, hydrological processes at local, regional and global scale. Presently many satellite sensor data are available for calculation of land surface temperature like Landsat 8 and MODIS. In the present study land surface temperature in Panchkula district of Haryana have been calculated using Landsat 8 satellite data of 5th May 2019 and 28th October 2019. Already available equations were used for computation of LST in the study area. LST in the study area varies from 18°C to 56°C. High LST is observed in cultivation land, urban area while low LST is observed in hilly forest area in the study area. In the study validation of LST could not be done because of not available of temperature data of studied dates, however, the result gives idea of land surface temperature on a particular day and location.


2021 ◽  
Vol 13 (9) ◽  
pp. 1671
Author(s):  
Junlei Tan ◽  
Tao Che ◽  
Jian Wang ◽  
Ji Liang ◽  
Yang Zhang ◽  
...  

The MODIS land surface temperature (LST) product is one of the most widely used data sources to study the climate and energy-water cycle at a global scale. However, the large number of invalid values caused by cloud cover limits the wide application of the MODIS LST. In this study, a two-step improved similar pixels (TISP) method was proposed for cloudy sky LST reconstruction. The TISP method was validated using a temperature-based method over various land cover types. The ground measurements were collected at fifteen stations from 2013 to 2018 during the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) field campaign in China. The estimated theoretical clear-sky temperature indicates that clouds cool the land surface during the daytime and warm it at nighttime. For bare land, the surface temperature shows a clear seasonal trend and very similar across stations, with a cooling amplitude of 4.14 K in the daytime and a warming amplitude of 3.99 K at nighttime, as a yearly average. The validation result showed that the reconstructed LST is highly consistent with in situ measurements and comparable with MODIS LST validation accuracy, with a mean bias of 0.15 K at night (−0.43 K in the day), mean RMSE of 2.91 K at night (4.41 K in the day), and mean R2 of 0.93 at night (0.90 in the day). The developed method maximizes the potential of obtaining quality MODIS LST retrievals, ancillary data, and in situ observations, and the results show high accuracy for most land cover types.


2021 ◽  
Vol 13 (17) ◽  
pp. 3473
Author(s):  
Philipp Reiners ◽  
Sarah Asam ◽  
Corinne Frey ◽  
Stefanie Holzwarth ◽  
Martin Bachmann ◽  
...  

Land Surface Temperature (LST) is an important parameter for tracing the impact of changing climatic conditions on our environment. Describing the interface between long- and shortwave radiation fluxes, as well as between turbulent heat fluxes and the ground heat flux, LST plays a crucial role in the global heat balance. Satellite-derived LST is an indispensable tool for monitoring these changes consistently over large areas and for long time periods. Data from the AVHRR (Advanced Very High-Resolution Radiometer) sensors have been available since the early 1980s. In the TIMELINE project, LST is derived for the entire operating period of AVHRR sensors over Europe at a 1 km spatial resolution. In this study, we present the validation results for the TIMELINE AVHRR daytime LST. The validation approach consists of an assessment of the temporal consistency of the AVHRR LST time series, an inter-comparison between AVHRR LST and in situ LST, and a comparison of the AVHRR LST product with concurrent MODIS (Moderate Resolution Imaging Spectroradiometer) LST. The results indicate the successful derivation of stable LST time series from multi-decadal AVHRR data. The validation results were investigated regarding different LST, TCWV and VA, as well as land cover classes. The comparisons between the TIMELINE LST product and the reference datasets show seasonal and land cover-related patterns. The LST level was found to be the most determinative factor of the error. On average, an absolute deviation of the AVHRR LST by 1.83 K from in situ LST, as well as a difference of 2.34 K from the MODIS product, was observed.


2013 ◽  
Vol 32 (3) ◽  
pp. 39-51 ◽  
Author(s):  
Marta Kubiak ◽  
Alfred Stach

Abstract The primary research problem presented in the article is verification of the thesis on the influence of relief and land cover type on the spatial variability of the land surface temperature (LST) distribution in the area including the river catchment area of upper Parsęta. The paper presents the use of thermal channels from two Landsat ETM+ scenes pictures, Corine Land Cover database from 2000 as well as the DTED-2 digital elevation model. Two ETM+ thermal bands processing algorithms were used for calculation of the land surface temperature: Qin et al. (2001) and Jiménez-Muňoz et al. (2003). Conducted statistical tests show significant differences of the land surface temperature values between particular land cover forms as well as types of relief. LST maps can be applied in topoclimatology eg. to detail and verify the in situ measurements.


Author(s):  
Sanjay Shekar N C ◽  
Hemalatha H N

Understanding vegetation characteristics is essential for watershed modeling, like in the prediction of streamflow and evapotranspiration (AET) estimation. So, the present study was taken to analyze the Land use/Land cover characteristics in a Sub-humid tropical river basin which is originating in the forested part of Western Ghats mountain ranges using the Moderate Resolution Imaging Spectroradiometer (MODIS) and Bhuvan satellite data as inputs for the algorithm. All the fourteen LU/LC characteristics present in the Hemavathi basin (5427 km2 ) were analyzed in the basin using satellite data which is located in Karnataka, India. Land Surface Reflectance (LSR) and Land Surface Temperature (LST) were the two data products used as input to map the pixel-wise variations in albedo, the fraction of vegetation (FV) and Land Surface Temperature (LST). It was found from the rainfall data that the year 2019 experienced higher rainfall than the average and 2012 very low rainfall than the normal. Parameters considered in this study Albedo, LST and FV are susceptible to wetness and temperature conditions. Variations in albedo and LST were similar in that both values in the summer of 2019 and 2012 are high than winter due to the high temperature and less wetness from all the LU/LC classes. Similarly, FV variations show opposite trends that values in the summer of 2019 and 2012 are low than in winter, which is due to the high temperature and less wetness. The results and discussions show that significant realistic variations in albedo, LST and FV with respect to all LU/LC classes. All the LU/LC classes characteristics in this study show significant variations with respect to wetness and temperature conditions, so the methodology proposed in this study can be used in regional monitoring of LU/LC classes in a convenient and cost-effective manner.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


Sign in / Sign up

Export Citation Format

Share Document