downwelling longwave radiation
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sean Horvath ◽  
Julienne Stroeve ◽  
Balaji Rajagopalan ◽  
Alexandra Jahn

AbstractThe timing of melt onset in the Arctic plays a key role in the evolution of sea ice throughout Spring, Summer and Autumn. A major catalyst of early melt onset is increased downwelling longwave radiation, associated with increased levels of moisture in the atmosphere. Determining the atmospheric moisture pathways that are tied to increased downwelling longwave radiation and melt onset is therefore of keen interest. We employed Self Organizing Maps (SOM) on the daily sea level pressure for the period 1979–2018 over the Arctic during the melt season (April–July) and identified distinct circulation patterns. Melt onset dates were mapped on to these SOM patterns. The dominant moisture transport to much of the Arctic is enabled by a broad low pressure region stretching over Siberia and a high pressure over northern North America and Greenland. This configuration, which is reminiscent of the North American-Eurasian Arctic dipole pattern, funnels moisture from lower latitudes and through the Bering and Chukchi Seas. Other leading patterns are variations of this which transport moisture from North America and the Atlantic to the Central Arctic and Canadian Arctic Archipelago. Our analysis further indicates that most of the early and late melt onset timings in the Arctic are strongly related to the strong and weak emergence of these preferred circulation patterns, respectively.


2021 ◽  
Author(s):  
Gitanjali Thakur ◽  
Stan Schymanski ◽  
Kaniska Mallick ◽  
Ivonne Trebs

<p>The surface energy balance (SEB) is defined as the balance between incoming energy from the sun and outgoing energy from the Earth’s surface. All components of the SEB depend on land surface temperature (LST). Therefore, LST is an important state variable that controls the energy and water exchange between the Earth’s surface and the atmosphere. LST can be estimated radiometrically, based on the infrared radiance emanating from the surface. At the landscape scale, LST is derived from thermal radiation measured using  satellites.  At the plot scale, eddy covariance flux towers commonly record downwelling and upwelling longwave radiation, which can be inverted to retrieve LST  using the grey body equation :<br>             R<sub>lup</sub> = εσ T<sub>s</sub><sup>4</sup> + (1 − ε) R<sub> ldw         </sub>(1)<br>where R<sub>lup</sub> is the upwelling longwave radiation, R<sub>ldw</sub> is the downwelling longwave radiation, ε is the surface emissivity, <em>T<sub>s</sub>  </em>is the surface temperature and σ  is the Stefan-Boltzmann constant. The first term is the temperature-dependent part, while the second represents reflected longwave radiation. Since in the past downwelling longwave radiation was not measured routinely using flux towers, it is an established practice to only use upwelling longwave radiation for the retrieval of plot-scale LST, essentially neglecting the reflected part and shortening Eq. 1 to:<br>               R<sub>lup</sub> = εσ T<sub>s</sub><sup>4 </sup>                       (2)<br>Despite  widespread availability of downwelling longwave radiation measurements, it is still common to use the short equation (Eq. 2) for in-situ LST retrieval. This prompts the question if ignoring the downwelling longwave radiation introduces a bias in LST estimations from tower measurements. Another associated question is how to obtain the correct ε needed for in-situ LST retrievals using tower-based measurements.<br>The current work addresses these two important science questions using observed fluxes at eddy covariance towers for different land cover types. Additionally, uncertainty in retrieved LST and emissivity due to uncertainty in input fluxes was quantified using SOBOL-based uncertainty analysis (SALib). Using landscape-scale emissivity obtained from satellite data (MODIS), we found that the LST  obtained using the complete equation (Eq. 1) is 0.5 to 1.5 K lower than the short equation (Eq. 2). Also, plot-scale emissivity was estimated using observed sensible heat flux and surface-air temperature differences. Plot-scale emissivity obtained using the complete equation was generally between 0.8 to 0.98 while the short equation gave values between 0.9 to 0.98, for all land cover types. Despite additional input data for the complete equation, the uncertainty in plot-scale LST was not greater than if the short equation was used. Landscape-scale daytime LST obtained from satellite data (MODIS TERRA) were strongly correlated with our plot-scale estimates, but on average higher by 0.5 to 9 K, regardless of the equation used. However, for most sites, the correspondence between MODIS TERRA LST and retrieved plot-scale LST estimates increased significantly if plot-scale emissivity was used instead of the landscape-scale emissivity obtained from satellite data.</p>


2019 ◽  
Vol 32 (22) ◽  
pp. 7935-7949 ◽  
Author(s):  
Israel Silber ◽  
Johannes Verlinde ◽  
Sheng-Hung Wang ◽  
David H. Bromwich ◽  
Ann M. Fridlind ◽  
...  

Abstract The surface downwelling longwave radiation component (LW↓) is crucial for the determination of the surface energy budget and has significant implications for the resilience of ice surfaces in the polar regions. Accurate model evaluation of this radiation component requires knowledge about the phase, vertical distribution, and associated temperature of water in the atmosphere, all of which control the LW↓ signal measured at the surface. In this study, we examine the LW↓ model errors found in the Antarctic Mesoscale Prediction System (AMPS) operational forecast model and the ERA5 model relative to observations from the ARM West Antarctic Radiation Experiment (AWARE) campaign at McMurdo Station and the West Antarctic Ice Sheet (WAIS) Divide. The errors are calculated separately for observed clear-sky conditions, ice-cloud occurrences, and liquid-bearing cloud-layer (LBCL) occurrences. The analysis results show a tendency in both models at each site to underestimate the LW↓ during clear-sky conditions, high error variability (standard deviations > 20 W m−2) during any type of cloud occurrence, and negative LW↓ biases when LBCLs are observed (bias magnitudes >15 W m−2 in tenuous LBCL cases and >43 W m−2 in optically thick/opaque LBCLs instances). We suggest that a generally dry and liquid-deficient atmosphere responsible for the identified LW↓ biases in both models is the result of excessive ice formation and growth, which could stem from the model initial and lateral boundary conditions, microphysics scheme, aerosol representation, and/or limited vertical resolution.


2019 ◽  
Vol 46 (5) ◽  
pp. 2781-2789 ◽  
Author(s):  
L. R. Vargas Zeppetello ◽  
A. Donohoe ◽  
D. S. Battisti

2017 ◽  
Vol 14 ◽  
pp. 139-143 ◽  
Author(s):  
Mauro Boccolari ◽  
Flavio Parmiggiani

Abstract. Trends and variability of the Arctic sea ice extent depend on various physical processes, including those related to changes in radiative fluxes, which are associated with cloudiness and water vapour and, in turn, with the atmospheric moisture transport over the Arctic. Aim of this work was: (i) to extract seasonal spatial patterns of the co-variability between the sea ice concentration (SIC) and the surface downwelling longwave radiation (SDL) in the Arctic Ocean during the 1982–2009 period; and (ii) to estimate the correlation coefficients between these patterns and the indices associated to some climate oscillation modes (AO, NAO, PNA, PDO and AMO). Maximum Covariance Analysis (MCA) was the main technique used in this study. Among our results, we highlight two areas of maximum co-variability SIC/SDL centered over the Barents Sea in winter and over the Chukchi Sea in summer. In addition, some statistically significant correlations (at 95 %) between the spatial patterns of co-variability and climate oscillation indices were assessed, e.g. with PDO and AMO in November–January, with NAO and AMO in May–July, and with PNA in August–October.


Sign in / Sign up

Export Citation Format

Share Document