Thin film diamond temperature sensor array for harsh aerospace environment

Author(s):  
Mohammad Aslam ◽  
Ashraf Masood ◽  
Ronald J. Fredricks ◽  
Mike A. Tamor
2011 ◽  
Vol 9 (2) ◽  
pp. 34-39 ◽  
Author(s):  
Chul-Hee Ahn ◽  
Hyoung-Hoon Kim ◽  
Sang-Hu Park ◽  
Chang-Min Son ◽  
Jeung-Sang Go

2004 ◽  
Vol 127 (3) ◽  
pp. 286-289 ◽  
Author(s):  
Jong-Jin Park ◽  
Minoru Taya

We are in the process of developing a micro-temperature sensor array with T-type (copper–constantan) thin film thermocouples (TFTCs) to measure the chip temperature distribution of electronic packages. A thin aluminum nitride (AlN) layer of 100 nm thickness was deposited on a silicon substrate. AlN acts not only as an electrical insulator but also as a thermal conductor between the silicon substrate and thin film thermocouples. Copper thin film with a thickness of 50 nm and constantan thin film with the same thickness were deposited on the AlN layer. The sensor array has 10×10 junctions within a 9mm×9mm area, and each junction covers a 100μm×100μm area. Electro-thermal forces measured by TFTCs using one-dimensional steady-state heat conduction were compared with the electro-thermal forces measured by standard thermocouples, and the difference between the Seebeck coefficients of the copper material and the constantan thin film was calculated according to these measurements. In order to verify the sensor array, it was placed under two-dimensional steady-state heat conduction, and electro-thermal forces were measured and converted to temperatures. Finite element analysis simulation results were compared with the temperatures, and with experimental measurements were found to be in agreement with the simulated values.


2020 ◽  
Vol 67 (7) ◽  
pp. 2890-2895
Author(s):  
Weiwei Li ◽  
Chenhuan Lin ◽  
Ahmed Rasheed ◽  
Emad Iranmanesh ◽  
Qi Zhou ◽  
...  

1994 ◽  
Author(s):  
Glenn Beheim ◽  
Jorge L. Sotomayor ◽  
Meg L. Tuma ◽  
Massood Tabib-Azar

1999 ◽  
Author(s):  
Ryosuke Nakamura ◽  
Shuichi Shoji ◽  
Akira Yotsumoto

Abstract An integrated mixing/reaction micro flow cell which consists of a sample/reagent mixing channel, a visible port and a reaction chamber was designed, fabricated and tested. A micro cone hole array of macro porous Si was employed for reagent injection part. A visible light transparent PDMS slab was used as the visible port. A Ti-Pt thin film heater and a p-n junction diode temperature sensor were integrated on the reaction chamber to realize feedback temperature control. Uniform mixing and precise temperature control were realized by the fabricated micro flow cell. The striate and simple microchannel structure of the micro flow cell is suitable for multiplexed micro reactor for chemical and biochemical applications.


2011 ◽  
Vol 80-81 ◽  
pp. 693-697
Author(s):  
Chang Hong Ji ◽  
Bin Zhen Zhang ◽  
Jian Zhang ◽  
Xiang Hong Li ◽  
Jian Lin Liu

In order to measure the pressure in the ultra-low temperature condition, the structure of ultra-low temperature piezoresistive pressure sensor is designed. Polysilicon nanometer thin film is used as a varistor according to its temperature and piezoresistive characteristics. The effect of the dimensions of silicon elastic membrane for the sensor sensitivity and the strain dimensions of the elastic membrane are analyzed, then layout position of resistances is arranged. The package structure of pressure sensor is designed. Meanwhile, a low-temperature sensor is designed to compensate the temperature influence to the pressure sensor.


2018 ◽  
Vol 45 ◽  
pp. 359-362 ◽  
Author(s):  
Tingting Pan ◽  
Wen Cao ◽  
Ming Wang

Sign in / Sign up

Export Citation Format

Share Document