Comparative study of GaAs/GaAlAs monolithic microwave transmission lines for traveling-wave electro-optic modulators

1992 ◽  
Author(s):  
S Tedjini ◽  
M. Mabrouk
Author(s):  
Minwoo Yi ◽  
Sungjun Yoo ◽  
Youngseok Bae ◽  
Sunghoon Jang ◽  
Joonhyung Ryoo ◽  
...  

In this paper, a photonic-based microwave system technology is described, and a traveling-wave electro-optic modulator is designed and manufactured as a key component. The fabricated modulator is composed of a metal diffusion waveguide for optical transmission and a planar waveguide electrode on lithium niobate substrate for microwave transmission. The electro-optic response bandwidth of I and Q channels in a fabricated dual parallel Mach-Zehnder modulator were measured for 27.67 and 28.11 GHz, respectively. Photonic four times up-converted X-band frequency and linear frequency modulated signal were confirmed using the fabricated electro-optic modulator by S-band input signal. The confirmed broadband signal can be applied to a microwave system for surveillance and high-resolution ISAR imaging.


2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


Author(s):  
Congshan Li ◽  
Ping He ◽  
Feng Wang ◽  
Cunxiang Yang ◽  
Yukun Tao ◽  
...  

Background: A novel fault location method of HVDC transmission line based on a concentric relaxation principle is proposed in this paper. Methods: Due to the different position of fault, the instantaneous energy measured from rectifier and inverter are different, and the ratio k between them is the relationship to the fault location d. Through the analysis of amplitude-frequency characteristics, we found that the wave attenuation characteristic of low frequency in the traveling wave is stable, and the amplitude of energy is larger, so we get the instantaneous energy ratio by using the low-frequency data. By using the method of wavelet packet decomposition, the voltage traveling wave signal was decomposed. Results: Finally, calculate the value k. By using the data fitting, the relative function of k and d can be got, that is the fault location function. Conclusion: After an exhaustive evaluation process considering different fault locations, fault resistances, and noise on the unipolar DC transmission system, four-machine two-area AC/DC parallel system, and an actual complex grid, the method presented here showed a very accurate and robust behavior.


2014 ◽  
Vol 960-961 ◽  
pp. 1100-1103
Author(s):  
Guang Bin Zhang ◽  
Hong Chun Shu ◽  
Ji Lai Yu

Wavefront identification is important for traveling based fault location. In order to improve its reliability, a novel wavefront identification method based on Harris corner detector has been proposed in this paper. The principle of single-ended traveling wave fault location was briefly introduced at first, and the features of wavefronts generated by faults on transmission lines were analyzed. The arrival of traveling waves' wavefronts is considered as corner points in digital image of waveshape. The corner points can be extracted precisely by Harris corner detector, and both false corner points and non-fault caused disturbance can be eliminated according to the calculated distance between two neighbour corner points and the angle of the corner point. The proposed method is proved feasible and effective by digital simulated test.


Sign in / Sign up

Export Citation Format

Share Document